
Distributed Dynamic Condition Response Structures
Thomas Hildebrandt Raghava Rao Mukkamala

{hilde,rao}@itu.dk
IT University of Copenhagen

Programming, Logic and Semantics Group
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

Abstract

We present distributed dynamic condition response structures as a declarative process model in-
spired by the workflow language employed by our industrial partner and conservatively generalizing
labelled event structures. The model adds to event structures the possibility to 1) finitely specify re-
peated, possibly infinite behavior, 2) finitely specify fine-grained acceptance conditions for (possibly
infinite) runs based on the notion of responses and 3) distribute events via roles. We give a graph-
ical notation inspired by related work by van der Aalst et al and formalize the execution semantics
as a labelled transition system. Exploration of the relationship between dynamic condition response
structures and traditional models for concurrency, application to more complex scenarios, and further
extensions of the model is left to future work.

1 Introduction

A key difference between declarative and imperative process languages is that the control flow for the
first kind is defined implicitly as a set of constraints or rules, and for the latter is defined explicitly, e.g.
as a flow diagram or a sequence of state changing commands.

There is a long tradition for using declarative logic based languages to schedule transactions in the
database community. Several authors have noted that it could be an advantage to also use a declara-
tive approach to specify workflow and business processes [4, 8, 9, 5, 1]. An important motivation for
considering a declarative approach is to achieve more flexible process descriptions [10]. The increased
flexibility is obtained in two ways: Firstly, imperative descriptions tend to over-constrain the control flow,
since one does not think of all possible ways of fulfilling the intended constraints. Secondly, adding a
new constraint to an imperative process description may require that the process code is completely
rewritten, while the declarative approach just requires the extra constraint to be added.

As a simple example, consider a hospital workflow with a single rule stating that the doctor must
sign after having added a prescription of medicine to the patient record. A naive imperative process
description may instruct the doctor first to prescribe medicine and then sign it. In this way the possibility
of adding several prescriptions before or after signing is lost, even if it is perfectly legal according to the
declaratively given rule. With respect to the second type of flexibility, consider adding the rule that a
nurse should give the prescribed medicine to the patient, but it is not allowed before the patient record
has been signed. For the simple imperative solution, one may be led to just adding a command in the end
of the program instructing the nurse to give the medicine. Perhaps we remember to insert a loop to allow
that the nurse give the medicine repeatedly. But the nurse should be allowed to give medicine as soon as
the first signature is put and the doctor should also be allowed to add new prescriptions after or even at
the same time as the nurse gives the medicine. So, the most flexible imperative description should in fact
spawn a new thread for the nurse after the first signature has been given. One may argue that the rules are
too lax in this setting, i.e. that one would need stricter rules to govern the medication. However, besides
the fact that this example is indeed extracted from a real-life study of paper-based oncology workflow at
danish hospitals [6, 7], the main point is that this is an example of how workflows in general often are
intended to be lax and flexible, not this workflow in particular.

1

Distributed DCR Structures Hildebrandt and Mukkamala

A drawback of the declarative approach however, is that the implicit definition of the control flow
makes the flow less easy to perceive for the user or compute by the execution engine. At each state, one
has to solve the set of constraints to figure out what are the next possible events. It becomes even worse
if you are not only interested in knowing the immediate next event, but also want to get an overview of
the complete run of the process.

This motivates researching the problem of finding an expressive declarative process model language
that can be easily visualized by the end user, allows an effective run-time scheduling and can be mapped
easily to a state based model if an overview of the flow graph is needed. In this paper, we propose a
new such declarative process model language called dynamic condition response structures. The model
is inspired by the declarative process matrix model language [6, 7] used by our industrial partner and
(labelled) prime event structures [12]. Indeed, it is formally a conservative generalization and strict
extension of both event structures and the core primitives of the process matrix model language.

An (labelled, prime) event structure in some sense can be regarded as a minimal, declarative model
for concurrent processes. It consists of a set of events, a causality (partial order) relation between events
stating which events are caused by the previous events (or dually, which events must have preceded the
execution of an event), a conflict relation stating which events can not happen in the same execution and
finally a labeling function describing the observable action name of each event.

To be used as an execution language for workflow or concurrent (multi-processor) systems several
aspects are missing however. In this paper we consider three of these aspects: Firstly, we need some
compact, still declarative, way to model repeated, possibly infinite behavior. In an event structure each
event can only be executed once. Secondly, it must be possible to specify that only some of the partial (or
infinite) computations are acceptable. Event structures have no notion of acceptance condition. Finally,
we need to be able to describe a distribution of events on agents/persons/processors.

To address these aspects, we propose a number ways to generalize event structures. Firstly, we allow
each event to happen many times and replace the symmetric conflict relation by an asymmetric relation
which dynamically determines which events are included in or excluded from the structure. Secondly,
the causality relation is split in two relations (not necessarily partial orders): A condition relation stating
which events must have happened before an event and a response relation stating which events must
happen after (as a response to) an event. We can then define runs to be acceptable if no response event
from some point in the execution is executable continuously without ever being executed. This relates
to the elegant definition of fair runs in true concurrency models investigated in [2]. Finally, we define
distribution by adding a set of roles assigned to persons/processors and actions.

Being based on essentially only four relations between events, the model can be simply visualized as
a directed graph with events (labelled by activities and roles) as nodes and four different kinds of arrows.
We found that our condition and response relations were two of the core LTL templates used in [10] and
thus decided to base our graphical notation on the one suggested in [10].

We also provide a relatively simple mapping to the state based model of labelled transition systems,
which formalizes the semantics. We show how run-time scheduling for workflows with finite runs can
easily be supported by identifying accepting states in the labelled transition system This gives a finite
state automaton that reflects the run-time scheduling of the process matrix model used by our industrial
partner. We leave the treatment of infinite runs for future work.

The main advantage of the dynamic condition response structures compared to the related work based
on Event logics, Concurrent transactional logic and temporal logics such as LTL explored in [11, 10, 4, 3]
is that the latter logics are more general and thus, we claim, more complex to visualize and understand
by people not trained in logic.

2

Distributed DCR Structures Hildebrandt and Mukkamala

2 Distributed Dynamic Condition Response Structures

Let us first recall the definition of a prime event structure and configurations of such [12].

Definition 1. A labeled prime event structure (ES) over an alphabet Act is a 4-tuple (E,≤,#, l) where

(i) E is a (possibly infinite) set of events

(ii) ≤ ⊆ E×E is the causality relation between events which is partial order

(iii) # ⊆ E×E is a binary conflict relation between events which is irreflexive and symmetric

(iv) l : E→ Act is the labeling function mapping events to actions

Action names a ∈ Act represent the actions the system might perform, an event e ∈ E labelled with
a represents occurrence of action a during the possible run of the system. The causality relation e ≤ e′

means that event e is a prerequisite for the event e′ and the conflict relation e#e′ implies that events e and
e′ both can not happen in the same run, more precisely one excludes the occurrence of the other. The
causality and conflict relations satisfy the conditions that e#e′ ≤ e′′ =⇒ e#e′′ and {e′ | e′ ≤ e} is finite
for any e ∈ E. A configuration c is a set of events such that,

(i) conflict-free: ∀e,e′ ∈ c.¬e#e′

(ii) downwards-closed: ∀e ∈ c,e′ ∈ E.e′ ≤ e =⇒ e′ ∈ c

We define a run of a labelled event structure to be a sequence of labelled events (e0, l(e0)),(e1, l(e1)), . . .
such that {e | e≤ e0}= /0 and for all i≥ 0.∪0≤ j≤i {e j} is a configuration.

As an intermediate step towards dynamic condition response structures we generalize prime event
structures to (prime) condition response event structures by replacing the causality relation with two
relations: the condition and the response relation, as described in the introduction.

Definition 2. A labeled condition response event structure (CRES) over an alphabet Act is a tuple
(E,≤C,≤R,#, l) where

(i) E is a (possibly infinite) set of events

(ii) ≤C ⊆ E×E is the condition relation between events which is partial order

(iii) ≤R ⊆ E×E is the response relation between events, satisfying that ≤=≤C ∪ ≤R is a partial order

(iv) # ⊆ E×E is a binary conflict relation between events which is irreflexive and symmetric

(v) l : E→ Act is the labeling function mapping events to actions

The condition relation imposes a precedence relation between events. For example, if two events are
related by the condition relation e≤C e′, then event e must have happened before event e′ can happen. As
for the causality relation in prime event structures we require that e#e′ ≤ e′′ =⇒ e#e′′ and {e′ | e′ ≤ e}
is finite for any e ∈ E. We define configurations and runs as for prime event structures, except that a
configuration of a CRES is only required to be downwards closed with respect to the condition relation.
That is, a configuration c of a CRES is a set of events such that,

(i) conflict-free: ∀e,e′ ∈ c.¬e#e′

(ii) downwards-closed: ∀e ∈ c,e′ ∈ E.e′ ≤C e =⇒ e′ ∈ c

3

Distributed DCR Structures Hildebrandt and Mukkamala

The response relation is in some sense dual to the condition relation and allows for defining an
acceptance condition for runs: We define a run (e0, l(e0)),(e1, l(e1)), . . . to be accepting if ∀i ≥ 0.ei ≤R

e =⇒ ∃ j ≥ 0.(e#e j ∨ (i < j∧ e = e j). In words, any pending response event must eventually happen or
be in conflict.

If one as it is usually the case consider any run of a prime event structure to be accepting, a prime
event structure can trivially be regarded as a condition response event structure with empty response
relation. This provides an embedding of prime event structures into condition response event structures
which preserves configurations and runs.

Proposition 1. The labelled prime event structure (E,≤,#, l,Act) has the same runs as the accepting
runs of the CRES structure (E,Act,≤C,≤R,#,l,Act) where ≤C=≤, ≤R= /0

We now go on to generalize the model to allow events to be executed several times. This also leads to
a relaxation of the constraints on the condition and response relations and changing the conflict relation
to a dynamic exclusion and inclusion of events.

Definition 3. A dynamic condition response structure (DCR) is a tuple D = (E,Act,→•,•→,±, l)
where

(i) E is the set of events

(ii) Act is the set of actions

(iii) →•⊆ E× E is the condition relation

(iv) •→⊆ E× E is the response relation

(v) ± : E×E→{+,%,∗} is the dynamic inclusion/exclusion relation.

(vi) l : E→ Act is a labelling function mapping events to actions.

The condition and response relations in DCR are the same as corresponding relations from CRES,
except that they are not constrained in any way. In DCR, we have used a slightly different symbols for
condition and response relations in order to be consistent with the graphical notation of DCR model.
The dynamic inclusion/exclusion relation allows events to be included and excluded dynamically in the
process. We will use the notation e→+ e

′
for±(e,e

′
) = + and similarly write e→% e

′
for±(e,e

′
) = %.

The relation e→+ e
′

expresses that, whenever event e happens, it will include e
′

in the process. On the
other hand, e→% e

′
expresses that when e happens it will exclude e

′
from the process.

We make the execution semantics precise below by giving a mapping to a labelled transition system
with an acceptance condition on runs defined as described in the introduction.

A CRES can be represented as a DCR by making every event excluding itself and encoding the
conflict relation by making any two conflicting events mutually exclude each other.

For example, consider a CRES with two conflicting events e,e′ as shown in figure 1(a). This CRES
can be represented as a DCR using the exclude relation as shown in the figure 1(b). The mutual exclude
relation on events e,e′ will ensure that, only one of the events can happen and similarly self exclude
relation on the events will enforce that any event can happen only once.

Finally, we define distributed dynamic condition response structures by adding roles and principals.

Definition 4. A distributed dynamic condition response structure(DDCR) is a tuple

(E,Act,→•,•→,±, l,R,P,as)

where (E,Act,→•,•→,±, l) is a dynamic condition response structure, R is a set of roles, P is a set
of principals (e.g. persons/processors/agents) and as ⊆ (P∪Act)×R is the role assignment relation to
executors and actions.

4

Distributed DCR Structures Hildebrandt and Mukkamala

(a) # relation in CRES (b) Encoding of # in DCR
Figure 1: Conflict relation in graphical notation

For a distributed DCR, the role assignment relation indicates the roles of principals and which roles
gives permission to executed which actions. As an example, if PeterasDoctor and SignasDoctor (for
Peter ∈ P and Doctor ∈ R, then Peter can do the Sign action having the role as Doctor.

(a) Prescribe Medicine Example (b) Prescribe Medicine Example With Check
Figure 2: DCRS example in graphical notation

Now, figure 2(a) shows the small example workflow from the introduction graphically. It contains
three events uniquely labelled (and thus identified) by the actions: prescribe medicine (the doctor
calculates and writes the dose for the medicine), sign (the doctor certifies the correctness of the calcu-
lations) and give medicine (the nurse administers medicine to patient). The events are also labelled by
the assigned roles (D for Doctor and N for Nurse).

The arrow •→• between prescribe medicine and sign indicates that the two events are related by
both the condition relation and the response relation. The condition relation means that the prescribe
medicine event must happen at least once before the sign event. The response relation enforces that, if
the prescribe medicine event happen, subsequently at some point the sign event must happen for the
flow to be accepted. Similarly, the response relation between prescribe medicine and give medicine
enforces that, if the prescribe medicine event happen, subsequently at some point the give medicine
event must happen for the flow to be accepted. Finally, the condition relation between sign and give
medicine enforces that the signature event must have happened before the medicine can be given. Note
the nurse can give medicine many times, and that the doctor can at any point chose to prescribe new
medicine and sign again. (This will not block the nurse from continue to give medicine. The interpreta-
tion is that the nurse may have to keep giving medicine according to the previous prescription).

The dynamic inclusion and exclusion of events is illustrated by an extension to the scenario (also
taken from the real case study): If the nurse distrusts the prescription by the doctor, it should be possible
to indicate it, and this action should force either a new prescription followed by a new signature or just a
new signature. As long the new signature has not been added, medicine must not be given to the patient.

This scenario can be modeled as shown in Figure 2(b), where one more action don’t trust is added.
Now, the nurse have a choice to indicate distrust of prescription and thereby avoid give medicine until

5

Distributed DCR Structures Hildebrandt and Mukkamala

the doctor re-execute sign action. Executing the don’t trust action will exclude give medicine and
makes the sign as pending response. So the only way to execute give medicine action is to re-execute
sign action which will then include give medicine. Here the doctor may choose to re-do prescribe
medicine followed by sign actions (new prescription) or simply re-do sign.

We now define the semantics of distributed DCRs by giving a map to a labelled transition system
and define the set of accepting runs. The states of the transition semantics will be triples (E, I,R) where
E ⊆ E represents the set of happened events, I ⊆ E represents the set of currently included events, and R
represents the set of pending responses.

Definition 5. For a distributed DCR D = (E,Act,→•,•→,±, l,R,P,as) we define the corresponding
labelled transition systems T (D) to be the tuple (S,(/0,E, /0),→⊆ S×Act×S) where S = P(E)×P(E)×
P(E) is the set of states, (/0,E, /0) ∈ S is the initial state, →⊆ S× (P×Act×R)× S is the transition
relation given by

(E, I,R)
(e,(p,a,r))−−−−−→ (E ∪{e}, I′,R′) where

(i) e ∈ I, l(e) = a, pasr, and aasr

(ii) {e′ ∈ I | e′→• e} ⊆ E

(iii) I′ = (I∪{e′ | ±(e,e′) = +})\{e′ | ±(e,e′) = %}

(iv) R′ = (R\{e})∪{e′ | e •→ e′}

We define the runs (e0,(p0,a0,r0)),(e1,(p1,a1,r1)), . . . of the transition system to be the sequences of

labels of a sequence of transitions (Ei, Ii,Ri)
(ei,(pi,ai,ri))−−−−−−−→ (Ei+1, Ii+1,Ri+1) from the initial state. We define

such a run to be accepting if ∀i≥ 0.e∈ Ri+1 =⇒ ∃ j.i < j∧(e = e j∨e 6∈ I j). In words, a run is accepting
if no pending response event from one point in the run is continuously included without happening.

The first item in the above definition expresses that, only events e that are currently included, can be
executed, and to give the label (p,a,r) the label of the event must be a, p must be assigned to the role r,
which must be assigned to a. The second item requires that all condition events to e which are currently
included should have been executed previously. The third and fourth items are the updates to the sets of
included events and pending responses respectively.

If one only want to consider finite runs, which is sometimes the case in the workflow community, the
acceptance condition degenerates to requiring that no pending response is included at the end of the run.
This corresponds to defining all states where R∩ I = /0 to be accepting states and define the accepting
runs to be those ending in an accepting state. If infinite runs are also of interest (as e.g. for reactive
systems and the LTL logic) the acceptance criteria can be captured by a mapping to a Büchi-automaton.
The construction is not straightforward and we leave it for future work to study it in detail.

(We define the transition system, runs and acceptance condition for a non-distributed DCR as for a
distributed DCR except there are no principals and roles.)

We can then state the result that the representation of CRES as DCR exemplified in figure 1(b)
provides an embedding preserving accepting runs.

Proposition 2. The condition response event structure (E,≤C,≤R,#, l,Act) has the same accepting runs
as the accepting runs of the DCR structure (E,Act,→•,•→,±,l) where→•=≤C, •→=≤R, ∀e,e′ ∈ E.±
(e,e′) = % if e = e′ or e#e′ and otherwise ±(e,e′) = ∗.

6

Distributed DCR Structures Hildebrandt and Mukkamala

3 Conclusion and Future Work

We presented a declarative process model derived as a sequence of relatively simple generalizations of
labelled event structures inspired by the workflow language employed by our industrial partner. The
first generalization is to split the causality relation of event structures into two dual relations, a condition
relation →• such that {e′ | e′ →• e} is the set of events required to have happened before the event e
can happen and a response relation •→, such that {e′ | e •→ e′} is the set of events that must happen
(or be in conflict) after the event e has happened. The final extension allows to finitely specify repeated,
possibly infinite behavior and acceptance conditions for runs by allowing multiple execution, and dy-
namic inclusion and exclusion of events and allows for distribution of events via roles. We presented a
graphical notation inspired by related work by van der Aalst et al, and gave a mapping to labelled tran-
sition systems with an acceptance condition on runs based on the response relation. We remarked that
if one only considers finite runs, the acceptance condition can be captured by defining a set of accepting
states in the labelled transition system and defining a run to be accepting if it ends in an accepting state.
Moreover, we remarked that for infinite runs the accepting condition can be captured by a mapping to
a Büchi-automaton, but leave the detailed study of this construction to future work. Also, future work
will consider a more detailed comparison between dynamic condition response structures and existing
models for concurrency, including the relation to the work in [2]. We also plan to study more complex
scenarios and workflow patterns, other acceptance conditions, distributed scheduling, and extensions of
the model, notably with time, nested sub structures, soft constraints, and compensation/exceptions.

Acknowlegments

This research is supported by the Trustworthy Pervasive Healthcare Services (TrustCare) project. Danish
Research Agency, Grant # 2106-07-0019 (www.TrustCare.eu).

References

[1] Christoph Bussler and Stefan Jablonski. Implementing agent coordination for workflow management systems
using active database systems. In Research Issues in Data Engineering, 1994. Active Database Systems.
Proceedings Fourth International Workshop on, pages 53–59, Feb 1994.

[2] Allan Cheng. Petri nets, traces, and local model checking. In Proceedings of AMAST, pages 322–337, 1995.
[3] Nihan Kesim Cicekli and Ilyas Cicekli. Formalizing the specification and execution of workflows using the

event calculus. Information Sciences, 176(15):2227 – 2267, 2006.
[4] Hasam Davulcu, Michael Kifer, C. R. Ramakrishnan, and I.V. Ramakrishnan. Logic based modeling and

analysis of workflows. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 1–3. ACM Press, 1998.

[5] Alvaro A. A. Fernandes, M. Howard Williams, and Norman W. Paton. A logic-based integration of active
and deductive databases. New Gen. Comput., 15(2):205–244, 1997.

[6] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala. From paper based clinical practice
guidelines to declarative workflow management. In Proceedings of 2nd International Workshop on Process-
oriented information systems in health- care (ProHealth 08), pages 336–347, Milan, Italy, September 2008.

[7] Raghava Rao Mukkamala, Thomas Hildebrandt, and Janus Boris Tøth. The resultmaker online consultant:
From declarative workflow management in practice to LTL. In Proceeding of 1st International Workshop on
Dynamic and Declarative Business Processes, 2008, pages 36–43, 2008.

[8] Pinar Senkul, Michael Kifer, and Ismail H. Toroslu. A logical framework for scheduling workflows under
resource allocation constraints. In In VLDB, pages 694–705, 2002.

7

Distributed DCR Structures Hildebrandt and Mukkamala

[9] Munindar P. Singh, Greg Meredith, Christine Tomlinson, and Paul C. Attie. An event algebra for specifying
and scheduling workflows. In Proceedings of the 4th International Conference on Database Systems for
Advanced Applications (DASFAA), pages 53–60. World Scientific Press, 1995.

[10] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows: Balancing between
flexibility and support. Computer Science - R&D, 23(2):99–113, 2009.

[11] Wil M.P van der Aalst and Maja Pesic. A declarative approach for flexible business processes management.
In Proceedings of Workshop on Dynamic Process Management (DPM 2006), volume 4103 of LNCS, pages
169–180. Springer Verlag, 2006.

[12] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors,
Advances in Petri Nets, volume 255 of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

8

	Introduction
	Distributed Dynamic Condition Response Structures
	Conclusion and Future Work

