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Abstract. We present an extension of the recently introduced declarative process
model Dynamic Condition Response Graphs ( DCR Graphs) to allow nested sub-
graphs and a new milestone relation between events. The extension was devel-
oped during a case study carried out jointly with our industrial partner Exformat-
ics, a danish provider of case and workflow management systems. We formalize
the semantics by giving first a map from Nested to (flat) DCR Graphs with mile-
stones, and then extending the previously given mapping from DCR Graphs to
Büchi-automata to include the milestone relation.

1 Introduction

Declarative process models have been suggested by several research groups [1–5,15,16,
18, 19] as a good approach to describe case management and other non-rigid business
and workflow processes where it is generally allowed to redo or skip activities, and even
dynamically adapt the set of activities and constraints. The rationale is that if a strict
sequencing is the exception, then the implicit specification of control flow in declarative
models is more appropriate than notations based on explicit control flows such as the
(typical use of) Business Process Model and Notation (BPMN) 2.0 [13].

A drawback of the declarative approaches in general, however, is that the implicit
definition of the state and control flow makes it more complex to perceive the state and
execute the process. To find out what are the next possible activities it is necessary to
evaluate a set of constraints defined relatively to the history of the execution.

This motivates finding an expressive declarative process language that allows for a
simple run-time scheduling which is easily visualized for the case worker. As a candi-
date for such a language we recently introduced in [7, 11] a declarative process model
called Dynamic Condition Response Graphs (DCR Graphs). The model is a general-
ization of the classic event structure model for concurrency [20] and is inspired by the
Process Matrix model [10,12] developed by one of our industrial partners Resultmaker,
a Danish provider of workflow and case-management systems.

The core DCR Graphs model consists of a set of events and four binary relations
between the events: The dynamic inclusion and dynamic exclusion relations, and the
condition and response relations. The dynamic inclusion and exclusion relations gen-
eralize the usual symmetric conflict relation of event structures by splitting it in two
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asymmetric relations: If an event A excludes an event B, written A →% B, then B
can not happen until after the occurrence of an event C that includes event B, which is
written C →+ B. Similarly, the condition and response relations generalize the usual
causal order relation of event structures by splitting it in two relations: If an event B has
event A as condition, written A →• B, then event A must either be currently excluded
or have happened for B to happen. Dually, if an event A has event B as response, written
A •→ B, then event B must eventually happen or always eventually be excluded after
an occurrence of event A. To express that events are executed by actors with different
roles the core model is extended with roles assigned to the events.

In [7] we show that the run-time state of DCR Graphs can be represented as a mark-
ing consisting of three sets of events, recording respectively the executed events, the
currently included events, and the pending response events, i.e. events that must even-
tually happen or be excluded. From the marking, it is easy to evaluate if an event can
happen (by checking if all its conditions are either executed or excluded) and to verify
if the graph is in a completed state (by checking if the set of included pending responses
is empty). It is also easy to update the state when executing an event by adding it to the
set of executed events, remove the event from the pending response set and add new
response events according to the response relation, and include/exclude events in the
set of currently included events according to the include/exclude relations. In [7,11] we
express the acceptance condition for infinite runs (no pending response is continuously
included without being executed) by giving a map to a Büchi automaton.

In the present paper we describe how to extend the model to allow for nested sub-
graphs as is standard in most state-of-the art modelling notations. The work was carried
out during a case study, in which we are applied Nested DCR Graphs in the design phase
of the development of a distributed, inter-organizational case management system car-
ried out by our industrial partner, Exformatics, a company that specializes in solutions
for knowledge sharing, workflows and document handling.

Fig. 1. Nested DCR Graphs with Arrange meeting sub-graph

Fig. 1 shows the
graphical notation for
nested DCR graphs
and illustrates the use
of nested sub-graphs
in a sub part of the
model arising from
our case study. The
Arrange meeting event
represents the arrange-
ment of a meeting be-
tween two of the organizations (DA and LO) using the distributed case management
system being developed. It has been refined to a sub-graph including four sub events
for proposing and accepting dates for the meeting. The dashed boxes indicate that the
events Accept DA and Accept LO for accepting meeting dates are initially excluded.
Described briefly, when the organization (U) creates a case, it triggers as a response the
event Propose dates-LO, representing LO proposing dates for a meeting. This event
triggers as a response and includes the event Accept DA, representing DA accepting
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the dates. But it also enables that DA can propose other dates, represented by the event
Propose Dates-DA. Now, this event triggers as a response and includes the event Ac-
cept LO, representing LO accepting the dates. Again, LO may do this, or again propose
dates. The proposal of dates may continue forever, and as long as no one accepts there
will be a pending response on at least one of the accept events. As soon as one of the ac-
cept events happen, they will both be excluded, and there will be none of the included
events in the sub-graph having pending responses. This corresponds to the accepting
condition for finite runs of DCR graphs [7], and thus intuitively reflects that the sub-
graph is in a completed state. Now, we want to express that the event Hold meeting can
only be executed when this is the case. To do this, we introduced a new core relation
between events called the milestone relation. If an event A is a milestone for an event
B, written A →� B, then B can not happen if A is included and required to be exe-
cuted again (i.e. as a response). The new milestone relation allow us to define nesting as
simply a tree structure on events that can be flattened to (flat) DCR Graphs by keeping
all atomic events (i.e. events with no sub-events) and letting them inherit the relations
defined for their super-events. In particular, the flattening does not introduce new events
(in fact it removes all super events) and at most introduce an order of n2 new relations.
Thus, we need not define a new operational semantics for nested DCR Graphs, instead
we can make the much simpler extension of the semantics for (flat) DCR Graphs to
consider the new milestone relation. It is worth noting that while the milestone relation
makes it very direct to express completion of subgraphs, we conjecture that it does not
add expressiveness to DCR Graphs.

Related work: Our approach is closely related to the work on ConDec [18, 19]. The
crucial difference is that we allow nesting and a few core constraints making it possi-
ble to describe the state of a process as a simple marking. ConDec does not address
nesting (nor dynamic inclusion/exclusion), but allows one to specify any relation ex-
pressible within Linear-time Temporal Logic (LTL). This offers much flexibility with
respect to specifying execution constraints. In particular the condition and response re-
lations are standard verification patterns and also considered in [18, 19] (the condition
relation is called precedence), and we have used the same graphical notation. How-
ever, the execution of a process expressed as LTL (which typically involves a transla-
tion to a Büchi-automaton) is more complex and the run-time state is difficult to relate
to the original ConDec specification. Moreover, we conjecture that DCR Graphs are
as expressive as Büchi-automata, and thus more expressive than LTL. Finally, Nested
DCR Graphs relates to the independent (so far unpublished) work on the declarative
Guard-Stage-Milestone model by Hull, presented in invited talks at WS-FM 2010 and
CASCON 2010.

Structure of paper: In Sec. 2 we define Nested DCR Graphs formally, motivated by the
case study, and define the mapping to flat DCR Graphs with milestones. In Sec. 3 we
then define the lts semantics and the mapping from flat DCR Graphs with milestones to
Büchi-automata. The two maps together define the semantics of Nested DCR Graphs.
Due to space limitations we refer to [8] and the full version [9] for a detailed description
of the case study and tool support. We conclude in Sec. 4 and give pointers to future
work.
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2 Nested DCR Graphs and Milestones

We now give the formal definition of the Nested DCR Graph model described infor-
mally above, which extends the model in our previous work [7] with nesting and the
new milestone relation →� between events.

Definition 1. A Nested Distributed dynamic condition response graph with milestones
is a tuple (E,�,M,→•, •→,→�,±,Act, l,R,P, as), where

(i) E is the set of events
(ii) � : E � E is a partial function mapping an event to its super-event (if defined),

and we also write e�e� if e� = �k(e) for 0 < k, referred to as the nesting relation
(iii) M = (E,R, I) ⊆ atoms(E) × atoms(E) × atoms(E) is the marking, contain-

ing sets of currently executed events (E), currently pending responses (R), and
currently included events (I).

(iv) →•⊆ E× E is the condition relation
(v) •→⊆ E× E is the response relation

(vi) →�⊆ E× E is the milestone relation
(vii) ± : E × E � {+,%} is a partial function defining the dynamic inclusion and

exclusion relations by e →+ e� if ±(e, e�) = + and e →% e� if ±(e, e�) = %
(viii) Act is the set of actions

(ix) l : E → Act is a labeling function mapping events to actions.
(x) R is a set of roles,

(xi) P is a set of principals (e.g. persons or processors) and
(xii) as ⊆ (P ∪ Act)× R is the role assignment relation to principals and actions.

where atoms(E) = {e | ∀e� ∈ E. � (e�) �= e} is the set of atomic events.
We require that the nesting relation � ⊂ E × E is acyclic and that there are no

infinite sequence of events e1 � e2 � . . .. We will write e � e� if e � e� or e = e�, and
e�e� if e� �e or e = e�. We require that the nesting relation is consistent with respect to
dynamic inclusion/exclusion in the following sense: If e�e� or e��e then ±(e, e��) = +
implies ±(e�, e��) �= % and ±(e, e��) = % implies ±(e�, e��) �= +.

The new elements are the nesting relation � ⊂ E × E and the milestone rela-
tion →�⊆ E× E. The consistency between the nesting relation and the dynamic inclu-
sion/exclusion is to ensure that when we map a nested DCR Graph to the corresponding
flat DCR Graph as defined in Def. 2 below, no atomic event both includes and excludes
another event. That is, if an event e includes (excludes) another event e��, then any of its
super or sub events e� can not exclude (include) the event e��.

The new elements conservatively extend the DCR Graphs defined in [7] in the sense
that given a Nested dynamic condition response graph as defined in Def. 1, the tu-
ple (atoms(E),M,→•, •→,±,Act, l,R,P, as) is a (Distributed) dynamic condition re-
sponse graph as defined in [7]. In particular, the semantics will be identical if both the
� map and the milestone relation are empty.

A nested distributed dynamic condition response graph can be mapped to a flat
distributed dynamic condition response graph with at most the same number of events.
Essentially, all relations are extended to sub events, and then only the atomic events
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are preserved. The labelling function is extended by labelling an atomic event e by
the sequence of labels labelling the chain of super events starting by the event itself:
e � e1 . . . ek � �. The role assignment is extended to sequences of actions by taking the
union of roles assigned to the actions.

Definition 2. For a Nested DCR Graph G = (E,�,M,→•, •→,→�,±,Act, l,R,P, as)
define the underlying flat DCR Graph as

G� = (atoms(E),M,→•�, •→�,→��,±�,Act+, l�,R,P, as�),

where rel� = �rel� for some relation rel ∈ {→•, •→,→�} and±(e, e�)� = ±(es, e�
s)

if ±(es, e�
s) is defined and e � es and e� � e�

s and l�(e0) = a0.a1.a2 . . . ak if e0 � e1 �
e2 . . . � ek and l(ei) = aifor 0 ≤ i ≤ k and as�(a0.a1.a2 . . . ak) = {as(ai) | 0 ≤ i ≤
k} and as�(p) = p for p ∈ P.

It is easy to see that the size of the relations may increased by an order of at most
n2 where n is the number of atomic events.

3 Semantics

Below we define the semantics of DCR Graphs with milestones by giving a labelled
transition semantics and a mapping to Büchi-automata.
Notation: For a set A we write P(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A of A we write→ ξ and ξ → for the set {a ∈ A | (∃a� ∈
ξ | a → a�)} and the set {a ∈ A | (∃a� ∈ ξ | a� → a)} respectively.

Definition 3. For a dynamic condition response graph with milestones G = (E,M,→•
, •→,→�,±, l,Act,R,P, as), we define the corresponding labelled transition systems
T (G) to be the tuple (S, M,→⊆ S ×Act×S) where S = P(E)×P(E)×P(E) is the
set of markings of G and M = (R, I, E) ∈ S is the initial marking, →⊆ S × E× (P×
Act× R)× S is the transition relation given by M� (e,(p,a,r))−−−−−−→ M�� where

(i) M� = (E�, R�, I �) is the marking before transition
(ii) M�� = (E� ∪ {e}, R��, I ��) is the marking after transition

(iii) e ∈ I , l(e) = a, p as r, and a as r,
(iv) →•e ∩I � ⊆ E�,
(v) →�e ∩I � ∩R� = ∅,

(vi) I �� = (I � ∪ e→+) \ e→%,
(vii) R�� = (R� \ {e}) ∪ e•→,

(viii) E�� = E� ∪ {e}

We define a run (e0, (p0, a0, r0)), (e1, (p1, a1, r1)), . . . of the transition system to be a

sequence of labels of a sequence of transitions Mi
(ei,(pi,ai,ri))−−−−−−−−−→ Mi+1 starting from

the initial marking. We define a run to be accepting if ∀i ≥ 0, e ∈ Ri.∃j ≥ i.(e =
ej ∨ e �∈ Ij). In words, a run is accepting if no response event is included and pending
forever, i.e. it must either happen at some later state or become excluded.
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Condition (iii) in the above definition expresses that, only events e that are currently
included, can be executed, and to give the label (p, a, r) the label of the event must be
a, p must be assigned to the role r, which must be assigned to a. Condition (iv) requires
that all condition events to e which are currently included should have been executed
previously. Condition (v) states that the currently included events which are milestones
to event e must not be in the set of pending responses (R�). Conditions (vi), (vii) and
(viii) are the updates to the sets of included events, pending responses and executed
events respectively. Note that an event e� can not be both included and excluded by the
same event e, but an event may trigger itself as a response.

If one considers only finite runs then the acceptance condition degenerates to re-
quiring that no pending response is included at the end of the run. If infinite runs are
also of interest (as e.g. for reactive systems and LTL) the acceptance condition can be
captured by a mapping to a Büchi-automaton with τ -event defined as follows.

Definition 4. A Büchi-automaton with τ -event is a tuple (S, s, Evτ ,→⊆ S × Evτ ×
S, F ) where S is the set of states, s ∈ S is the initial state, Evτ is the set of events
containing the special event τ ,→⊆ S×Evτ ×S is the transition relation, and F is the
set of accepting states. A (finite or infinite) run is a sequence of labels not containing
the τ event that can be obtained by removing all τ events from a sequence of labels
of transitions starting from the initial state. The run is accepting if the sequence of
transitions passes through an accepting state infinitely often.

Since we at any given time may have several pending responses we must make sure
in the mapping to Büchi-automata that all of them are eventually executed or excluded.
To do this we assume any fixed order of the finite set of events E of the given dynamic
condition response graph. For an event e ∈ E we write rank(e) for its rank in that
order and for a subset of events E� ⊆ E we write min(E�) for the event in E� with the
minimal rank.

Definition 5. For a finite distributed dynamic condition response graph G = (E,M,→•
, •→,→�,±,Act, l,R,P, as) where E = {e1, . . . , en}, marking M = (E,R, I) and
rank(ei) = i, we define the corresponding Büchi-automaton with τ -event to be the
tuple B(G) = (S, s,→⊆ S × Evτ × S, F ) where

– S = P(E)× P(E)× P(E)× {1, . . . , n}× {0, 1} is the set of states,
– Evτ = (E× (P× Act× R)) ∪ {τ} is the set of events,
– s = (M, 1, 1) if I ∩R = ∅, and s = (M, 1, 0) otherwise
– F = P(E)× P(E)× P(E)× {1, . . . , n}× {1} is the set of accepting states and
– →⊆ S × Evτ × S is the transition relation given by (M�, i, j) τ−−−→ (M�, i, j�)

where

(a) M� = (E�, R�, I �) is the marking
(b) j� = 1 if I � ∩R� = ∅ otherwise j� = 0.

and (M�, i, j)
(e,(p,a,r))

−−−−−−−−−→ (M��, i�, j�) where

(i) M� = (E�, R�, I �)
(e,(p,a,r))

−−−−−−−−−→ (E��, R��, I ��) = M�� is a transition of T (D).
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(ii) For M = {e ∈ I � ∩R� | rank(e) � i} let j� = 1 if
(a) I �� ∩R�� = ∅ or
(b) min(M) ∈ (I � ∩R�\(I �� ∩R��)) ∪ {e} or
(c) M = ∅ and min(I � ∩R�) ∈ (I � ∩R�\(I �� ∩R��)) ∪ {e}
otherwise j� = 0.

(iii) i� = rank(min(M)) if min(M) ∈ (I � ∩R�\(I �� ∩R��)) ∪ {e} or else
(iv) i� = rank(min(I �∩R�)) if M = ∅ and min(I �∩R�) ∈ (I �∩R�\(I ��∩R��))∪{e}

or else
(v) i� = i otherwise.

We prove that the mapping from the labelled transition semantics to Büchi-automata is
sound and complete in the full version of the paper [9].

The formal semantics of DCR graphs mapped to Büchi-automata enabled us to per-
form model checking and formal verification of processes specified in DCR graphs. The
prototype implementation allows us to perform verification of both safety and liveness
properties using the SPIN [17] model checker and only verification of safety properties
using the ZING [14] model checker. The prototype has also been extended to support
runtime verification, for monitoring of properties specified using Property Patterns [6].

4 Conclusion and Future Work

We have given a conservative extension of the declarative process model Distributed
DCR Graphs [7] to allow for nested sub-graphs motivated and guided by a case study
carried out jointly with our industrial partner. A detailed description of the case study
and tool support for DCR Graphs can be found in [8]. The main technical challenge
was to formalize the execution and in particular completion of sub-graphs. We do this
by introducing a new milestone relation A →� B, which blocks the event B as long as
there are events in A required to be executed (i.e. required responses). We believe this is
the right notion of completeness of nested sub-graphs. First of all, it coincides with the
definition of acceptance of finite runs in DCR Graphs [7] recalled in Sec. 3 above. Sec-
ondly, its formalization is a simple extension of the labelled transition semantics given
in [7, 11] since it is a condition on the set of pending responses already included in the
states. Finally, it allows for a nested sub-graph to alternate between being completed
and not completed, as is often the case in ad hoc case management. This is not possible
in the related ad-hoc sub-process activity in BPMN 2.0. Future work within the Trust-
Care and CosmoBiz projects, which are the context of the work, includes exploring the
expressiveness of DCR Graphs, extending the theory and tools for analysis, verification
and model-driven engineering, extending the model to be able to express other relevant
features such as multi-instance sub-graphs, time, exceptions, data, types and run-time
adaption, i.e. dynamic changes of the model.
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