
Towards Trustworthy Adaptive Case Management with Dynamic Condition
Response Graphs

Raghava Rao Mukkamala
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

rao@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen and

Exformatics A/S
2100 Copenhagen, Denmark

tslaats@itu.dk

Abstract—We describe how the declarative Dynamic Condi-
tion Response (DCR) Graphs process model can be used for
trustworthy adaptive case management by leveraging the flexi-
ble execution, dynamic composition and adaptation supported
by DCR Graphs. The dynamically composed and adapted
graphs are verified for deadlock freedom and liveness in the
SPIN model checker by utilizing a mapping from DCR Graphs
to PROMELA code. We exemplify the approach by a small
workflow extracted from a field study at a danish hospital.

Keywords-Adaptive Case Management, Declarative Business
Processes, Verification

I. INTRODUCTION

It has been recognized early [2], [29], that supporting
dynamic (i.e. run-time) changes of process descriptions is
one of the key challenges in workflow management sys-
tems. The challenge has been receiving increasing interest
recently as a consequence of the demand for efficient IT
systems supporting so-called adaptive case management
(ACM) processes [14], [23], [24], [27], characterized by
being unpredictable and individual in nature and being
carried out by knowledge workers.

Healthcare services are typical sources of case man-
agement processes that exercise the challenges of evolu-
tionary changes and being unpredictable and individual in
nature. And the lack of support for dynamic adaptation
and composition of processes is indeed one of the limiting
factors for the usage in practice of the many standardized
treatment plans and clinical guidelines being defined around
the world [15], [16].

Changing a process description while process instances
are executing may cause side effects such as un-intentional
repetition or skipping of tasks and introduction of deadlocks
and livelocks. This situation is referred to as the dynamic
change bug. Elimination of the dynamic change bug calls
for the use of formal process models and development of
verification techniques that support dynamic changes and
analysis for deadlocks and livelocks. In particular, formal
declarative models [4], [12], [31] have been put forward
as offering more flexibility in execution than the traditional
approaches using explicit flow-graphs.

In the present paper, we propose an approach to specifica-
tion and execution of trustworthy adaptive case management
processes based on Dynamic Condition Response Graphs
(DCR Graphs) [4], [6]–[8], [19]. DCR Graphs is a formal,
declarative process modeling language developed in the
Trustworthy Pervasive Healthcare Services (TrustCare.dk)
research project as part of the first author’s PhD project [17],
and currently being embedded in the Exformatics case
management tools as part of the industrial PhD project
carried out by the last author. A brief overview of the
DCR Graphs Tools implemented in Exformatics is presented
in [26] and a graphical editor for DCR Graphs can be
downloaded from [25].

A DCR Graph specifies a process as a set of labelled
events related by five different relations specifying the
constraints on the execution of events. The label of an event
typically indicates the name of an atomic activity and by
whom/which role the activity can be executed, while the
constraints declare rules for the ordering of events.

As a running example, we will consider a simple health-
care process inspired by a previous field study at a danish
hospital [15]. A fragment of the process is shown as a DCR
Graph in Fig. 1 below.

Figure 1. Prescribe medicine process fragment

The graph consists of four events shown as boxes labelled
by the name of the activity (prescribe medicine, sign,
give medicine, and don’t trust) and the roles of whom
can perform the activities, in this example either (D)octor or
(N)urse. Intutivively, the process allows a doctor to prescribe
medicine (any number of times) and subsequently being
required to certify the prescription by a signature. The nurse

must then give the medicine (to a patient) or alternatively
indicate that the prescription is not trusted. In the latter case
the doctor is required to sign again (possibly after making
a new prescription).

The prescribe medicine event is related to the sign

event by a condition relation (!•), which declares that the
sign event can not happen before at least one prescribe

medicine event has happened. Similarly, the sign event is
related to the give medicine and don’t trust events, meaning
that the sign event must have happened before the give

medicine and don’t trust events can happen.
Dually, the prescribe medicine event is related to the

sign and give medicine events by a response relation
(•!). The response relation declares that if the prescribe

medicine event happens during an execution, it must even-
tually be followed (as a response) by a sign event and
a give medicine event for the execution to be accept-
ing (completed). But note, a single sign event and give

medicine event can fulfill the response requirement of
several preceeding prescribe medicine events. For instance,
an execution starting with two prescribe medicine events
and then a sign event is possible (because the condition for
the sign event is fullfilled) but not (yet) completed since
the give medicine event is a pending response. Now, if the
execution is continued with a give medicine event then it
is completed. It may still however continue, e.g. with a new
prescribe medicine event. In this case the execution is no
longer completed, since sign and give medicine are again
pending responses.

The give medicine and don’t trust events are related
to each other by the exclude relation (!%). The exclude
relation from give medicine to don’t trust declares that
the don’t trust event will be excluded from the process if
give medicine is executed. Similarly, the exclude relation
from don’t trust to give medicine declares that the give

medicine event will be excluded from the process if don’t

trust is executed. That is, the two events are mutually
exclusive. However, sign is related to give medicine and
don’t trust by an include relation (!+), which means that
whenever sign happens, the two events give medicine and
don’t trust are included again (if they were excluded).
Note that condition relations from an excluded event are
not considered, and if an excluded event is required to be
executed (as a response), this requirement is also ignored as
long as the event is excluded.

The intuition is that give medicine will be executed if the
nurse trusts the prescription and don’t trust if the nurse does
not trust the prescription. In the latter case, the sign event
is required to be executed again due to the response relation
from don’t trust to sign. In that case, the doctor will check
his prescription, and may make new prescriptions but must
sign again, whereafter the choice of giving the medicine or
not trusting is made possible again by the inclusion relation.

A key feature of DCR Graphs is that the operational

semantics indicated above can be formalized by representing
the state of a process by a marking of the graph. The
marking consists of three finite sets of events, (Ex,Re, In),
representing respectively the previously executed events,
the events that are required to be executed in the future
(as responses) or excluded, and the currently included
events. This information is sufficient to infer enabledness
of an event from the relations of the graph and to infer
if an execution is completed. If we again consider the
execution starting with two prescribe medicine events
and then a sign event, this execution leads to the marking
({prescribemedicine, sign}, {givemedicine},E), where
E = {prescribemedicine, sign, givemedicine, don0t trust} is
the set of all events in the graph. Continuing the execution
by the give medicine event then leads to the marking
({prescribemedicine, sign, givemedicine}, ;,E\{don0t trust}).

In [17], [19] it is shown that the operational semantics
of DCR Graphs can be mapped to Büchi-automata [19].
This makes it possible to formally verify temporal properties
of the processes, and in particular deadlock freedom and
liveness, using standard tools as for instance the SPIN
verification tool [10], [11], [18].

A. DCR Graphs for ACM
The new contribution of the present paper is to describe

how DCR Graphs and formal verification of such can be
used for trustworthy, adaptive case management. Due to its
emergent nature, visibility and control of an ACM process
can only be achieved in the context of the execution of a
process instance [27]. Therefore, case/knowledge workers
continuously adapt the process activities to achieve their
(sub)goals successfully [20]. At the same time, due to
frequent adaptation, a process may end up in a situation,
where it is no longer possible to achieve the overall goal of
the process. We primarily use the term trustworthy to indi-
cate that the adapted processes represented as DCR Graphs
can be verified before execution is continued. Ideally, the
application of formal verification techniques will not only
enhance the trustworthiness of the processes, but also help
knowledge workers in making suitable adaptive changes.

We demonstrate below, that the declarative nature of
DCR Graphs makes it well suited for handling run-time
changes and thus the emergent nature of an ACM pro-
cess. Declarative models are usually considered harder to
perceive than imperative process models based on explicit
flow graphs. However, the simple representation of the
run-time state by a marking on the DCR Graph and the
verification step, help to perceive the meaning (and state) of
the process and to ensure that the process execution can still
be completed, i.e. the goal of the process can be met.

Fig. 2 below illustrates the normal iteration cycle through
three phases of a trustworthy execution of a DCR Graph.

The execution starts in the phase model & adapt, where
an ACM process is modelled either from scratch or by

Figure 2. Execution phases of a DCR Graph for ACM

selecting one or more DCR Graphs process fragments (e.g.
provided in repositories) which are composed and adapted.
In dynamic environments, process knowledge can be local
and fragmentary, confined to a certain situation or context.
Process Fragments [1] represent a notion of partial and
local knowledge, which can be integrated or composed
dynamically at design time or run-time. Adopting the notion
of process fragments, DCR Graphs can be used as process
fragments to represent a partial perspective of a complex
process, which can be combined through dynamic compo-
sition. Formally speaking, there is no difference between a
normal DCR Graph and a DCR Graph representing a pro-
cess fragment, except that the fragment DCR Graph might
represent a subgoal or partial functionality like reusable tem-
plates. Fig 3 shows two such fragments for our healthcare
example, to be explained in Sec. IV.

(a) prescribe medicine (b) order tests

Figure 3. DCR Graph fragments

In the next phase, verify, formal verification techniques
will be applied to the process. For instance, one could verify
that the process does not allow deadlocks, always allows
progress and to achieve the overall goal, i.e. completion by
(continued) execution or exclusion of all pending response
events.

After successful verification of the process, the execution
can proceed to the next phase, partial execution, where the
process can be executed further until it reaches a point where

further adaptation is required and the execution moves to
the model & adapt phase, starting a new iteration. However,
note that (in the spirit of ACM) it should also be possible
to go back to the modelling phase after verification, to skip
verification after the modelling phase, or go back to the
verify phase after the partial execution.

In this way, an ACM process represented as DCR Graphs
can be modelled, verified and executed iteratively, where
the emergence of new knowledge can be used by the case
workers to adapt the processes at run-time.

However, one may ask why the proposed approach can not
simply prevent adoptions that will lead to dead/livelocks. We
believe that the general approach allowing to compose/adapt
and have intermediate models containing potential deadlock-
s/livelocks would be valuable as it gives more flexibility
in the modeling and adaptation phase. It can be seen as
analogous to be able to write a program that does not type
check, and then correct the errors, as opposed to only be
able to add code parts that lead to a well-typed program.

B. Structure of paper
The rest of the paper is structured as follows. We discuss

related work in Sec. II whereas in Sec. III we further
elaborate the idea of using DCR Graphs for ACM by our
healthcare example. In Sec. IV we then formally define the
adaptation operations on DCR Graphs, after recalling the
formal definition of DCR Graphs and their execution. In
Sec. V we then formally define what it means for a DCR
Graph to be deadlocked and live, introducing new notions of
strongly deadlock free and live processes which guarantee
progress even if only events that are required as responses
are executed. This is in particular relevant if the execution
of the DCR Graphs is distributed on different peers (e.g.
according to the different roles) as considered in [7]. In
Sec. VI we then describe how to verify safety and liveness
properties on DCR Graphs (as defined in Sec. V) using
the SPIN model checking tool and based on the mapping
of DCR Graphs to Büchi-automata [19]. Finally, Sec. VII
concludes the paper.

II. RELATED WORK

The issue of dynamic change [2] in workflow systems
has been investigated thoroughly for Petri net and graph
based models. In [29] Van der Aalst described an approach
to find change regions in WorkFlow nets, which represent
the parts of a model that are effected by a change. He
also proved that a change can be safely applied to a part
outside the change region, simultaneously preserving the
soundness of a workflow instance. In [22] Reichert et al.
presented a framework for the support of adaptive changes
in the graph-based workflow model ADEPT. They developed
a complete and minimal set of change operations that will
allow for modifying an ADEPT workflow at run-time, while
still preserving its consistency and correctness.

The previous work often take as a correctness criteria
in previous approaches [2], [22], [29], that the state of the
instance after applying the change, could have been reached
from the initial state by replaying the past run. We find
that only allowing changes that are consistent with the past
history too strong for ACM. Instead we advocate recording
the change as part of the execution sequence.

Recent studies [24], [28] have indicated that BPMN-like
languages are not suitable for ACM. One reason is that the
processes are described as procedures. Procedures tend to
over-specify the processes, and also, the changes one can ap-
ply must be formulated as changes to the procedure. On the
other hand, declarative workflow models [4], [12], [23], [31],
including DCR Graphs, have been proposed as a alternative
to traditional workflow models to handle unpredictability
and emergent nature of ACM processes. Here process are
described by declaring the constraints and goals, which
usually under-specify the process and supports changes to
the constraints and goals. Declare [30] is a constraint-
based declarative workflow model formalized using linear
time logic (LTL). Similar to DCR Graphs, Declare also
supports adaptive changes such as add/remove constraints
and activities, however, since they can not be interpreted in
an immediate state, it is required that the trace of the past
execution satisfies the LTL formulae corresponding to the
change. That is, as discussed above, only changes that are
consistent with the run so far are allowed.

A declarative approach using Guard-Stage-Milestone [12]
based on ECA-like rules for specification of life cycles
on Business artifacts was proposed in the recent years. To
the best of our knowledge, no work on adaptive changes
for the GSM model has been published yet. However, it
has been advocated as a model for ACM due to its rich
data-centric approach and declarative nature and forms the
basis for the recent Case Management Model And Notation
(CMMN) [21] proposed by OMG, which includes support
for dynamic changes. Also the IBM case manger [3] in-
cludes some support for dynamic changes. Furthermore,
a modeling approach based on Declarative Configurable
Process Specifications [24] is being developed for automated
support of case management processes. Using declarative
modeling, their model supports process adaptability by using
configurable data objects and context based configuration
rules, but does not support process run-time adaptation when
compared to DCR Graphs.

The use of SPIN for verification of business processes was
studied earlier. In [13], authors used SPIN to verify business
processes by translating an imperative process specification
into state machine description in Promela. In this paper, we
translated a declarative process specification in DCR Graphs
to Promela by mapping it to Buc̈hi-automata [19].

Finally, we have recently proposed a join operator [8]
for modular composition and refinement of DCR Graphs
and to use it as a formal basis for modular implementation

of context sensitive and aspect oriented processes. The
compose and change operations can be derived from the
join operator, however, in this paper we have chosen to
define the adaptation operations directly to make them more
straightforward and easier to understand.

III. DCR GRAPHS FOR ACM BY EXAMPLE

In this section, we will discuss the adaptation opera-
tions for DCR Graphs and exemplify the adaptiveness of
DCR Graphs for ACM using the healthcare example.

As adaptation operations we consider the operations of
adding/removing an event, adding/removing a constraint
between two events, changing an event, relabelling an event,
adapting the marking and forcing execution of a non-enabled
event. The operations of adding events (to the graph or
the marking) and constraints are facilitated by a general
compositition operation, which simply takes the union of
two graphs as described formally in the next section.

As an example of an ACM process, consider a healthcare
workflow where a doctor during the initial consultation
realizes that some medical tests are needed before giving
the medicine to a patient. In the initial modelling phase, the
doctor thus selects in a repository the prescribe medicine
DCR Graph fragment in Fig. 3(a) and the order tests process
fragment in Fig. 3(b) and compose them. The doctor then
proceeds to execute the order test event resulting in the
DCR Graph instance shown in Fig. 4.

Figure 4. Composed prescribe medicine example with live lock.

The tick mark in the green circle on order tests represents
that order tests has been executed, i.e. it is in the executed
events set of the marking. Additionally, due to the response
relation from order tests to the examine tests and sign

events, they have a pending response, i.e. they are in the
response events set of the marking. This is indicated by
red circle with an exclamation mark. Now, the arrow from
examine tests to prescribe medicine having a diamond at
its head is the last constraint that we have not yet explained,
called the milestone constraint. The milestone constraint
disables the target event (in this case prescribe medicine)
if the source event has a pending response and is included,
as it is the case in Fig. 4. The intuition is that the source
event must be in a completed state (the milestone reached)

before the target event can be executed. Disabled events are
indicated with red stop signs. Note that the sign, examine

tests and give medicine events are also not enabled because
of the condition constraints from prescribe medicine, do

tests and sign respectively.
Looking carefully at the DCR Graph in Fig. 4, one may

notice that, in order to sign for ordering the tests, the
prescribe medicine event must have been done first, which
requires the examine tests has been done first (to remove
the pending response), which then requires that do tests

event has to be done first, because of the condition relation
from do tests to examine tests. Alas, the do tests event is
blocked by the sign step. In other words, we have a cycle of
events blocking each other, in which two of the events are
actually required to be executed to complete the workflow.
The DCR Graph is not deadlocked, since the order tests

event can be repeatedly executed, but this will not change
the marking and thus not allow the doctor to make further
progress. Hence, the DCR Graph is live locked as explained
in Def. 9, as it will never be able to execute or exclude the
pending response events (sign and examine tests).

The process instance can be adapted in many ways to
remove the live-lock. One way to solve the problem is to
force execution of the disabled sign event. However, in
fact, the live lock happens because of a modeling error.
The doctor should have two separate sign events, one for
prescribe medicine and one for order tests. This can again
be achieved in many ways. A simple way is to rename
the sign events to fresh event names before composing the
graphs, which would result in the DCR Graphs in 5 (again
after the execution of order tests). Verification of this graph
shows that it is deadlock and livelock free.

Figure 5. Adapted prescribe medicine example

IV. ADAPTIVE DCR GRAPHS FORMALLY

In this section we first recall from [17] the formal defi-
nitions of DCR Graphs and then give the formal definitions
of the new adaptation operations. We employ the following
notation: We assume infinite sets E and L for events and
labels respectively. For a set E we write P(E) for the
power set of E (i.e. set of all subsets of E). For a binary

relation !✓ E ⇥ E and a subset ⇠ ✓ E we write ! ⇠
and ⇠ ! for the set {e 2 E | (9e0 2 ⇠ | e ! e0)} and
the set {e 2 E | (9e0 2 ⇠ | e0 ! e)} respectively, and
abuse notation writing ! e and e! for ! {e} and {e}!
respectively when e 2 E.

A. Basic Definitions

Formally, a DCR Graph is defined as follows.
Definition 1: A Dynamic Condition Response Graph

(DCR Graph) G is a tuple (E,M,!•, •!,!⇧,!+,!%
, L, l), where

(i) E ⇢ E is a finite set of events,
(ii) M 2 P(E)⇥ P(E)⇥ P(E) is the marking,

(iii) !•, •!,!⇧,!+,!%✓ E ⇥ E is the condition, re-
sponse, milestone, include and exclude relation respec-
tively.

(iv) L ⇢ L is the finite set of labels and l : E! P(L) is a
labeling function mapping events to sets of labels.

As explained in the introduction, the marking (ii) represents
the state of the DCR Graph and the five binary relations
over the events (iii) define the constraints on the events
and dynamic inclusion and exclusion. Finally, each event
is mapped to a set of labels (iv). In our running example
simply assign a singleton set containing a pair consisting of
the name of the activity and the role able to perform the
activity.

In Def. 2 we formally define when an event e of a
DCR Graph is enabled for a marking M = (Ex,Re, In),
written M `G e. To be enabled, the event e must be included,
i.e. e 2 In, all the included events that are conditions for it
must be in the set of executed events, i.e. (In\ !•e) ✓ Ex,
and none of the included events that are milestones for
it can be in the set of scheduled response events, i.e.
(In\ !⇧e) ✓ E\Re.

We then further define the new marking M

0 =
(Ex0,Re0, In0), resulting from executing an event e in the
marking M. Firstly, the event e is added to the set of
executed events, i.e. Ex0 = (Ex [{e}). Secondly, the event
e is removed from the set of scheduled responses and all
events that are a response to the event e are added, i.e.
Re

0 = ((Re\{e})[e•!). Note that if an event is a response
to itself, it will be removed and immediately added again,
and thus remain in the set of scheduled responses after its
execution. Finally, all the events that are excluded by e are
removed from the included events set, and all the events that
are included by e are added, i.e. In0 = (In \ e!%)[e!+.

Definition 2: For a Dynamic Condition Response Graph
G = (E,M,!•, •!,!⇧,!+,!%, L, l), and M =
(Ex,Re, In), we define that an event e 2 E is enabled, written
M `G e, if e 2 In^ (In\ !•e) ✓ Ex^ (In\ !⇧e) ✓ E\Re.
The result of executing the event e in the marking M of
a DCR Graph G is the marking (Ex,Re, In) �G e =def�
Ex [{e}, (Re \ {e}) [e•!, (In \ e!%) [e!+

�
.

Having defined when events are enabled for execution
and the effect of executing an event we define in Def. 3 the
notion of finite and infinite executions and when they are
accepting (or completed). Intuitively, an execution is accept-
ing if any required, included response in any intermediate
marking is eventually executed or excluded in a subsequent
marking during the execution.

We further define the subset of executions in which only
events that are required as responses are executed, which
we refer to as must executions. The reason for considering
must executions is that if a process is deadlock and livelock
free even when restricted to must executions, then we are
guaranteed progress, even if the participants in any step only
perform activities that are required as responses.

Definition 3: For a Dynamic Condition Response Graph
G = (E,M,!•, •!,!⇧,!+,!%, L, l) we define an ex-
ecution of G to be a (finite or infinite) sequence of pairs
of events and labels: ē = (e0, a0), (e1, a0), . . . such that
ai 2 l(ei) and Mi `G ei for M0 = M, Mi+1 = Mi �G ei.

Assuming Mi = (Exi, Ini,Rei) we say the execution ē is
a must execution if for all (ei, ai) 2 ē, ei 2 Rei and an
accepting (or completed) execution if for all (ei, ai) 2 ē,
8e 2 Ini \ Rei.9j � i.ej = e _ ej !% e. Let exeM(G),
mexeM(G), accM(G)and maccM(G) denote respectively the
set of all executions, all must executions, all accepting
executions, and all accepting must executions of G starting
in marking M.

B. Adaptation Operations on DCR Graphs
In order to support adaptive changes for case manage-

ment, we define three operations on DCR Graphs: compose,
change and discard.

The first operation compose is a binary composition of
two DCR Graphs, where we glue together (take the union
of) the events, constraints, labels and markings of both the
DCR Graphs as formally defined in Def. 4. Note that the
compose operation also glues the markings of DCR Graphs,
therefore it really defines composition of process instances.

Definition 4: Let Gi = (Ei,Mi,!•i, •!i,!⇧i,!+i

,!%i, Li, li), Mi = (Exi,Rei, Ini) for i 2 {1, 2}. Then
G1 � G2 = (E,M,!•, •!,!⇧,!+,!%, L, l), where

(i) E = (E1 [E2)
(ii) M = (Ex1 [Ex2,Re1 [Re2, In1 [In2),

(iii) !=!1 [!2 for each!2 {!•, •!,!⇧,!+,!%}

(iv) l(e) = l1(e) [l2(e) and L = L1 [L2

In Def. 5 we define event substitution operation on DCR
Graphs, which is used for renaming of events. We use the
shorthand e00[e 7! e0] to refer to the event e0 if e00 = e and
e00 otherwise. First, the new event is substituted in the set
of events (i) and labeling function is updated accordingly
(ii). Further, all the constraints sets (iii) and the sets in
the marking (iv) are updated accordingly for the event
substitution. Note that there are no restrictions on the new

name for the event, therefore if the new name already
exists in the DCR Graph, then substitution operation allows
merging of events.

Definition 5: Let G = (E,M,!•, •!,!⇧,!+,!%
, L, l), M = (Ex,Re, In) and e 2 E, e0 2 E. The event sub-
stitution operation is defined as G[e 7! e0] = (E0,M0,!•0
, •!0,!⇧0,!+0,!%0, L, l0) where

(i) E

0 = E\{e} [{e0}
(ii) (e00[e 7! e0], a) 2 l0 if (e00, a) 2 l

(iii) 8 !2 {!•, •!,!⇧,!+,!%}.e1[e 7! e0] !0

e2[e 7! e0] if e1 ! e2
(iv) M

0 = (Ex0,Re0, In0) and 8R 2 {Ex,Re, In}.e00[e 7!
e0] 2 R0 if e00 2 R

The change operation can be used for renaming labels
as formally defined in Def. 6. First, an event substitution
operation is applied (i) and then new labels are added to the
set of labels. Finally, the labeling function is updated (ii) for
the new labels.

Definition 6: Let G = (E,M,!•, •!,!⇧,!+,!%
, L, l), M = (Ex,Re, In) and e 2 E, e0 2 E, A ⇢ L. The
change event operation is defined as G[e 7! (e0, A)] =
(E0,M0,!•0, •!0,!⇧0,!+0,!%0, L [A, l00) where

(i) G[e 7! e0] = (E0,M0,!•0, •!0,!⇧0,!+0,!%0, L, l0)

(ii) l00(e00) =

⇢
A if e00 = e
l0(e00) otherwise

In the Def. 7, we introduce three overloaded versions of
the discard operation to delete: an event from a DCR Graph
(a), a constraint from a DCR Graph (b) and an event from
a marking (c). Discarding an event from a DCR Graph
will delete it from the set of events along with its label
mapping from the labeling function (ai), additionally, it will
also be removed from all the sets in the marking (aii) and
finally all the constraints from and to the event will also be
deleted from the respective constraints sets (aiii). Similarly,
discarding a constraint from a DCR Graph will delete it
from the respective constraint set (b), where as discarding an
event from a set in the marking of a DCR Graph is simply
removing that event from the set (c).

Definition 7: Let G = (E,M,!•, •!,!⇧,!+,!%
, L, l) with M = (Ex,Re, In). We define three discard
operations by

(a) G e = (E0,M0,!•0, •!0,!⇧0,!+0,!%0, L, l0) where

(i) E

0 = E \ {e}, l0 = l \ {(e, l(e))}
(ii) 8R 2 {Ex,Re, In}.R0 = R \ {e}

(iii) 8 !2 {!•, •!,!⇧,!+,!%}.
!0=! \{(e, e0), (e0, e), (e, e) | e0 2 E}

(b) G (e !c e0) = (E,M,!•0, •!0,!⇧0,!+0,!%0

, L, l0) where ! 2 {!•, •!,!⇧,!+,!%}, and

!0
=

⇢
! \{(e, e0)} if ! c =!
! otherwise

(c) G (e,R) = (E,M0,!•, •!,!⇧,!+,!%, L, l) where
M

0 is the obtained by removing the event from a set
R 2 {Ex,Re, In} in M.

V. SAFETY AND LIVENESS

A deadlock state of a DCR Graph is a marking where
there is an included, required response but no enabled events.
Thus, a DCR Graph is deadlock free if and only if for any
reachable marking, there is either an enabled event or no
included required responses. It is strongly deadlock free
if and only if for any reachable marking there is either
an enabled event which is also a required response or no
included required responses. As exemplified below, strongly
deadlock freedom guarantees progress even if the execution
of the DCR Graphs is distributed (e.g. according to the
different roles) and every peer only executes events that are
required as responses.

Definition 8: Let MM!⇤(G) denotes the set of all reach-
able markings from M. For a dynamic condition response
graph G = (E,M,!•, •!,!⇧,!+,!%, L, l) we de-
fine that G is deadlock free, if 8M0 = (Ex0, In0,Re0) 2
MM!⇤ .(9e 2 E.M0 `G e _ (In0 \ Re

0 = ;)). We say
that G0 is strongly deadlock free, if 8M0 = (Ex0, In0,Re0) 2
MM!⇤ .(9e 2 Re

0.M0 `G e _ (In0 \ Re

0 = ;)).
If G is the DCR Graph in Fig. 1, then G is both

deadlock free and also strongly deadlock free. However,
the adapted graph G (prescribe medicine •! sign) in
which the response relation from prescribe medicine to
sign is discarded will only be deadlock free, but not strongly
deadlock free. If the doctor starts by prescribing medicine,
then there will be a pending response on give medicine (but
not on sign), therefore there will be no enabled event which
also is a pending response. The workflow is not deadlocked
since the sign activity may be executed, even though it
is not required as a response. The workflow is not in an
accepting state either, since there is a required response for
give medicine. However, if every participant only does what
is required, i.e. scheduled as a response, the workflow will
never progress to a completed state. This may in particular
be a problem if the execution of the workflow is distributed,
e.g. according to the roles, as supported by the algorithm
given in [7]. If the doctor only sees activities assigned to the
doctor role, she may never sign after doing a prescription
if it is not required as response. However, the nurse will be
required to perform the give medicine activity, but it is not
enabled since the sign must have been done first.

Note that deadlock freedom only guarantees that the
process can make some progress, but not that it can proceed
a long an accepting (completed) execution. A DCR Graph is
defined to be live if and only if, in every reachable marking,
it is always possible to continue along an accepting run (i.e.
eventually execute or exclude any of the pending responses).
We defined that it is strongly live if and only if, from any

reachable marking there exists an accepting must execution.

Definition 9: For a dynamic condition response graph
G = (E,M,!•, •!,!⇧,!+,!%, L, l) we define that the
DCR Graph is live, if 8M0 2 MM!⇤ .accM0(G) 6= ;, and
strongly live, if 8M0 2MM!⇤ .maccM0(G) 6= ;,

The give medicine example G in Fig. 1 is again both live
and strongly live, and G (prescribe medicine •! sign)
will be live, but not strongly live.

VI. VERIFICATION OF DCR GRAPHS

This sections describes how the safety and liveness prop-
erties on DCR Graphs can be verified by using the Spin [10]
model checking tool. Spin supports verification of properties
for asynchronous process models and distributed systems,
specified in the language called PROMELA.

Figure 6. Verification of DCR Graphs using Spin tool

Fig. 6 shows the overall methodology of the verification of
DCR Graphs using Spin. The DCR verification tool accepts
a DCR Graph specification as an XML file and generates the
necessary PROMELA code, compiles it and verifies it using
Spin. The DCR Graph verification tool is available through
a web interface [18].

The properties to be verified can be expressed as a Linear
Temporal Logic (LTL) formula in the tool. The Spin LTL
compiler generates a finite automaton for the negation of
the formula, referred to as a never claim. Similarly, a finite
automaton is generated for the DCR Graph model specified
in PROMELA code. Finally, the Spin verifier searches for
an acceptance cycle in the synchronous product of the two
automata. In case the verifier finds an acceptance cycle,
it reports an error by providing a trace for the property
violation.

A. DCR Graphs to PROMELA
In the encoding of a DCR Graph to PROMELA, we

employ the mapping from DCR Graphs to Büchi automata
from [9], [19], as liveness properties are to be verified
over infinite runs. The event names of a DCR Graph are
mapped to integers, as PROMELA does not have support
for strings. The constraint sets and marking of a DCR Graph

are encoded as arrays, as PROMELA does not support sets.
Furthermore, the language only supports fixed size arrays,
therefore we have defined an event set of a DCR Graph as a
bit array, where the index of an array represents the integer
code of an event and the value (0 or 1) at that index defines
whether the event is part of the set or not. The marking (M)
of a DCR Graph is encoded as three bit arrays.

The PROMELA language supports one-dimensional ar-
rays only. Therefore the constraints sets of a DCR Graph are
defined by using typedef for two-dimensional arrays where
the indices of the array are the integer codes of events and
the values (0 or 1) represents whether the constraint exists
from the first to the second event as shown in Fig. 7.

The assignment included[2] = 1; defines that the event gm
(with integer code = 2) is part of the included set. Since all
data types of PROMELA are initialized to 0 by default, all
the events which are not explicitly mentioned in the initial
marking or specification are not included.

PROMELA does not have procedure/function construct to
structure the code, therefore the inline construct was used
to group a sequence of statements related to one logical
function as shown in Fig. 7.

Figure 7. Specification of give medicine example

The main logic for verification of safety and liveness
properties is shown in Fig. 8. The main process function
(proctype dcrs) contains one do loop in which code from
different inline blocks will be executed.

The model specification() inline block contains the spec-
ification of a DCR Graph as described previously and
the clear enabled events block clears the list of events
in the enabled set. The next inline block is Com-
pute enabled events, which loops through the events in the
included set and verifies whether all its included condition
events have been executed. Similarly, all included milestone
events of an event are also checked to make sure that none
of them are part of the pending response set. An event
satisfying these checks will be added to the enabled events
set.

The next inline block, nondeterministic execution(), con-
tains code for executing one of the events from the enabled
set. The tool generates options for an if block with a guard

matching to status bit of an event in the enabled set. During
verification, Spin will evaluate all the guards and choose one
of the enabled options non-deterministically, by assigning it
to the variable random event executed.

Figure 8. PROMELA code for main process

B. Deadlock and Liveness
In nondeterministic execution(), if none of the guards are

evaluated to true, then the else block will be executed.
The code in the else blocks declares a deadlock if there
are any included pending responses. In the absence of
included pending responses, the program jumps to end state
to terminate the program.

In the case of enabled events in every marking, the else
block will never get executed and thereby the do loop will
continue forever without breaking. Spin detects such kind
of cycles and terminates the program after inspecting all the
states of the automaton.

Liveness properties of a DCR Graph can be verified by
specifying a never claim in LTL. In the tool, liveness
verification is done by specifying a correctness claim as
⇤⌃ accepting state visited in LTL, from which Spin
generates a never claim based on the negation of the formula.

C. Strong Deadlock freedom and Liveness
The encoding of deadlock for must executions is very

much similar to that of the deadlock property introduced in
the previous paragraphs. In the nondeterministic execution,
an additional check for included and enabled pending re-
sponses will be made, before choosing any enabled event
for non-deterministic execution. In case of existence of a
pending response without any enabled pending response, a
violation of strongly deadlock freedom will be declared.

For verification of the strong liveness property on a
DCR Graph, we generate an encoding for every possible
reachable marking of the DCR Graph. In addition a check

will be made in the non-deterministic execution of events,
to make sure that the enabled events are also pending
responses.

D. Evaluation of Spin Verification
Table. I shows statistics for the Spin verification of the

healthcare workflow from the previous sections. The second
and third columns represent the number of events and
constraints in the DCR Graph. The number of reachable
markings in the DCR Graph is shown in column 4. The last
three columns display the statistics from Spin verification:
the number of Spin program states, time taken in seconds
and memory usage in megabytes respectively.

DCR Graph Spin statistics

Model E ! states program
states

time
sec.

memory
MB.

prescribe
medicine 3 4 13 14,741 0.04 613.04

order tests 5 7 72 231,731 0.60 759.70
prescribe
+ order 6 11 116 602,289 1.67 775.20

adapted
prescribe
+ order

7 11 460 3,267,596 9.37 880.70

create
case [5] 17 28 1386 15,614,513 63.1 1432.5

Table I
SPIN VERIFICATION STATISTICS

Even though Spin verification on DCR Graphs is quite
useful, we have noticed certain drawbacks. First of all, the
number of Spin program states grows exponentially with
the number of events in a DCR Graph. For example, the
adapted prescribe medicine example from Fig. 5 contains
7 events and 11 constraints. But as shown in Table. I, the
Spin program states are more than three million, even though
there are only 460 unique reachable markings in the büchi
automaton for the DCR Graph. The automata construction is
inherently exponential, however, a further blow-up of Spin
program states is caused by the lack of good data structures
in PROMELA for encoding sets and other complex types.
This means that the event sets of a DCR Graphs have to
be encoded as fixed size arrays and these arrays have to
be iterated many times to calculate the updated markings.
Moreover, every value change of a variable (e.g. loop index)
is considered as unique program state in Spin. Additionally,
the increase of Spin memory usage (last column) is also an
alarming issue, which could be problematic in verification
of larger models.

In addition to the above limitations, the output generated
by Spin is also not user friendly. Especially, it is difficult for
modellers to figure out the counter example from the Spin
error trails. Therefore, we strongly believe that by perform-
ing the verification directly on the reachable markings of a
DCR Graph, it is possible to verify much larger models and
provide intuitive validation results.

VII. CONCLUSION

We have presented an approach to adaptive case manage-
ment based on the recently introduced declarative process
model Dynamic Condition Response (DCR) Graphs. Our
work leverages three key features of DCR Graphs: 1) Its
declarative nature with implicit definition of states allow for
simple definitions of process composition and change, 2) its
simple operational semantics based on markings of the graph
allowed us to extend the definitions of process composition
and change to running instances, and 3) the mapping of
DCR Graphs to the SPIN model checking tool allowed us
to formally verify deadlock freedom and liveness for the
dynamically changed adapted models.

The definition of deadlocks for DCR Graphs is new,
and exploited that the markings of DCR Graphs allow to
distinguish between which events may happen now (the
enabled events), and which events must eventually happen
(the required future responses). This allowed us to define
a deadlock as a state where some event must eventually
happen, but no events may happen now. Moreover, we in-
troduced a new notion of strongly deadlock freedom, which
intuitively means that even in a situation where every actor
only perform required actions there will be no deadlocks. We
also introduced the notion of liveness and strong liveness for
DCR Graphs

We found that the PROMELA language and its ability to
verify both safety and liveness properties made SPIN easy
to use as back-end verification tool for DCR Graphs and
benchmarked the verification on a small set of examples.
However, the benchmarks also show that the resulting SPIN
models reach a quite large number of states for even small
DCR Graphs, which indicate that there may be an advantage
to implement the verification algorithms directly for DCR
Graphs. This could potentially explore the partial order
information of DCR Graphs and avoid constructing the
interleaved transition system model.

In future work we plan to investigate a native implemen-
tation of model checking for DCR Graphs. We also plan to
extend the approach to ACM presented in the present paper
to DCR Graphs extended with data and nested sub graphs
as defined in [17] and relate and compare our work to the
GSM-approach [12].

REFERENCES

[1] Hanna Eberle, Tobias Unger, and Frank Leymann. Process
fragments. In OTM ’09, pages 398–405. Springer-Verlag,
2009. 3

[2] Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg.
Dynamic change within workflow systems. In Proceedings
of conference on Organizational computing systems, COCS
’95, pages 10–21, New York, NY, USA, 1995. ACM. 1, 3, 4

[3] Wei-Dong Zhu et. al. Advanced Case Management with IBM
Case Manager. IBM Redbooks, 2013. http://www.redbooks.
ibm.com/redbooks/pdfs/sg247929.pdf. 4

http://www.redbooks.ibm.com/redbooks/pdfs/sg247929.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247929.pdf

[4] Thomas Hildebrandt and Raghava Rao Mukkamala. Declar-
ative event-based workflow as distributed dynamic condition
response graphs. In PLACES, volume 69 of EPTCS, pages
59–73, 2011. 1, 4

[5] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs
Slaats. Designing a cross-organizational case management
system using dynamic condition response graphs. In Pro-
ceedings of IEEE International EDOC Conference, 2011. 9

[6] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs
Slaats. Nested dynamic condition response graphs. In Pro-
ceedings of Fundamentals of Software Engineering (FSEN),
April 2011. 1

[7] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs
Slaats. Safe distribution of declarative processes. In 9th In-
ternational Conference on Software Engineering and Formal
Methods (SEFM) 2011, 2011. 1, 3, 7

[8] Thomas Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats,
and Francesco Zanitti. Modular context-sensitive and aspect-
oriented processes with dynamic condition response graphs.
In Foundations of Aspect-Oriented Languages 2013, 2013. 1,
4

[9] Thomas T. Hildebrandt and Raghava Rao Mukkamala.
Declarative event-based workflow as distributed dynamic con-
dition response graphs. In PLACES, pages 59–73, 2010. 7

[10] Gerard J. Holzmann. The model checker spin. IEEE Trans.
Softw. Eng., 23:279–295, May 1997. 2, 7

[11] Gerard J. Holzmann. SPIN Model Checker, The: Primer and
Reference Manual. Addison-Wesley Professional, 2004. 2

[12] Richard Hull. Formal study of business entities with life-
cycles: Use cases, abstract models, and results. In Tevfik
Bravetti, Mario; Bultan, editor, 7th International Workshop on
Web Services and Formal Methods, volume 6551 of Lecture
Notes in Computer Science, 2010. 1, 4, 9

[13] Wil Janssen, Radu Mateescu, Sjouke Mauw, and Jan Spring-
intveld. Verifying business processes using spin. In Proceed-
ings of the 4th International SPIN Workshop, pages 21–36,
1998. 4

[14] Jana Koehler, Joerg Hofstetter, and Roland Woodtly. Capabil-
ities and levels of maturity in it-based case management. In
Business Process Mangement (BPM), LNCS. Springer Verlag,
2012. 1

[15] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao
Mukkamala. From paper based clinical practice guidelines
to declarative workflow management. In Process-oriented
information systems in healthcare (ProHealth 08), pages 36–
43. BPM 2008 Workshops, 2008. 1

[16] K.M. Lyng. Clinical guidelines in everyday praxis, implica-
tions for computerization. Journal of Systems and Information
Technology, 2009. 1

[17] Raghava Rao Mukkamala. A Formal Model For Declarative
Workflows: Dynamic Condition Response Graphs. PhD thesis,
IT University of Copenhagen, June 2012. http://www.itu.dk/
people/rao/phd-thesis/DCRGraphs-rao-PhD-thesis.pdf. 1, 2,
5, 9

[18] Raghava Rao Mukkamala. Formal verification of dcr graphs
using spin. http://trustcare.itu.dk/dcrgraphs-verification/
verificationWebUI.aspx, 2012. 2, 7

[19] Raghava Rao Mukkamala and Thomas Hildebrandt. From
dynamic condition response structures to büchi automata.
In Proceedings of 4th IEEE International Symposium on
Theoretical Aspects of Software Engineering (TASE 2010),
August 2010. 1, 2, 3, 4, 7

[20] Nicolas Mundbrod, Jens Kolb, and Manfred Reichert. To-
wards a system support of collaborative knowledge work. In
1st Int’l Workshop on Adaptive Case Management (ACM’12),
BPM’12 Workshops, LNBIP. Springer, September 2012. 2

[21] Object Management Group (OMG). Case management model
and notation (cmmn). http://www.omg.org/spec/CMMN/,
January 2013. 4

[22] Manfred Reichert and Peter Dadam. A framework for
dynamic changes in workflow management systems. In
Conference on Database and Expert Systems Applications,
1997. 3, 4

[23] I. Rychkova and S. Nurcan. Towards adaptability and con-
trol for knowledge-intensive business processes: Declarative
configurable process specifications. In Hawaii International
Conference on System Sciences, 2011. 1, 4

[24] Irina Rychkova. Towards automated support for case manage-
ment processes with declarative configurable specifications.
In BPM Workshops. Springer Berlin Heidelberg, 2013. 1, 4

[25] Tijs Slaats. Dcr graphs editor. http://www.itu.dk/research/
models/wiki/index.php/DCR Graphs Editor, February 2013.
1

[26] Tijs Slaats, Raghava Rao Mukkamala, Thomas Hildebrandt,
and Morten Marquard. Exformatics declarative case manage-
ment workflows as dcr graphs. In International Conference
on Business Process Management (BPM2013), 2013. 1

[27] Keith D. Swenson. Mastering the Unpredictable: How
Adaptive Case Management Will Revolutionize the Way That
Knowledge Workers Get Things Done. Meghan-Kiffer Press,
2010. 1, 2

[28] KeithD. Swenson. Position: Bpmn is incompatible with acm.
In Marcello Rosa and Pnina Soffer, editors, BPM Workshops,
volume 132 of Lecture Notes in Business Information Pro-
cessing, pages 55–58. Springer Berlin Heidelberg, 2013. 4

[29] W. M. P. Van Der Aalst. Exterminating the dynamic change
bug: A concrete approach to support workflow change. In-
formation Systems Frontiers, 3(3):297–317, September 2001.
1, 3, 4

[30] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg.
Declarative workflows: Balancing between flexibility and
support. Computer Science - R&D, 23(2):99–113, 2009. 4

[31] Wil M.P van der Aalst and Maja Pesic. A declarative
approach for flexible business processes management. In
Proceedings DPM 2006, LNCS. Springer Verlag, 2006. 1,
4

http://www.itu.dk/people/rao/phd-thesis/DCRGraphs-rao-PhD-thesis.pdf
http://www.itu.dk/people/rao/phd-thesis/DCRGraphs-rao-PhD-thesis.pdf
http://trustcare.itu.dk/dcrgraphs-verification/verificationWebUI.aspx
http://trustcare.itu.dk/dcrgraphs-verification/verificationWebUI.aspx
http://www.omg.org/spec/CMMN/
http://www.itu.dk/research/models/wiki/index.php/DCR_Graphs_Editor
http://www.itu.dk/research/models/wiki/index.php/DCR_Graphs_Editor

	Introduction
	DCR Graphs for ACM
	Structure of paper

	Related Work
	DCR Graphs for ACM by Example
	Adaptive DCR Graphs Formally
	Basic Definitions
	Adaptation Operations on DCR Graphs

	Safety and Liveness
	Verification of DCR Graphs
	DCR Graphs to PROMELA
	Deadlock and Liveness
	Strong Deadlock freedom and Liveness
	Evaluation of Spin Verification

	Conclusion
	References

