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Abstract

We propose the recently introduced declarative and event-based
Dynamic Condition Response (DCR) Graphs process model as a
formal basis for modular implementation of context-sensitive and
aspect-oriented processes. The proposal is supported by a new join
operator allowing modular composition and refinement of DCR
Graphs. We give small illustrative examples of DCR Graphs defin-
ing context-sensitive processes where context-events dynamically
enable and disable the need for authentication and the join opera-
tor is used to add authentication to a process. Finally, we discuss
the use of formal verification to ensure that processes satisfy safety
and liveness properties, and define two liveness properties (dead-
lock freedom and liveness) that can be verified directly on the state
graph for DCR Graphs.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory - Semantics, Syntax

General Terms Design, Languages, Reliability, Verification

1. Introduction

The terms context-sensitivity, context-awareness and context-dependency

are generally used to describe systems that adapt their behavior ac-
cording to changes in their context. Changes in the context are nat-
urally described as events, either provided by sensors, user inputs
or messages from other programs. This suggests the application of
event-driven programming to implement context-aware systems.
Event-driven systems are normally based on the publish-subscribe
pattern. That is, at any time the system subscribes to specific (pat-
terns of) events. Whenever a pattern has been detected, the system
reacts by performing a block of code, possibly publishing new
events.

In the present paper we propose to use the recently introduced
event-based declarative process model, Dynamic Condition Re-
sponse Graphs (DCR Graphs) [3, 6, 7, 13], as a formal basis for
modular and aspect-oriented construction of context-sensitive sys-
tems. The modular and aspect-oriented construction is facilitated
by a new, general join operator. We give small examples that il-
lustrate how the join operator can be used to merge processes, and
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discuss how merging is similar to adding advices and weaving of
aspects in AOP. The examples also show how the join operator can
be used to refine and more generally adapt behavior of a process,
i.e. by replacing an event or a complete sub process with a new
process.

It should be stressed that the proposal in the present paper is
very initial work. The DCR Graph model was developed with an-
other application area in mind as a foundation for flexible work-
flow languages as part of the second author’s PhD project [12].
It has then subsequently been continued in the (ongoing) PhD
projects of the third and fourth authors focussing on respectively
developing a formal foundation for the implementation of flexi-
ble, cross-organizational workflow systems [5] and developing a
process-oriented event-based programming language (PEPL) [4]
for context-sensitive services based on DCR Graphs.

In Fig. 1 below we give a concrete example of a context-
sensitive authorization process that we will use as running example.
The example is inspired by a concrete case study of an oncology
workflow process at a danish hospital [11].

The graph consists of five events (shown as boxes). Each event
corresponds to the (possibly repeated) execution of an activity,
which is indicated by a label assigned to the event and shown inside
the box. The activities in the example are thus action, authorize,
reauthorize, normal and emergency.
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Figure 1. Context-sensitive authorization process as DCR Graph.

One way to think of a DCR Graph is as an event-driven reactive
program, where the code-blocks usually executed when an event
pattern is detected have been replaced by specifications of response
events, specifying activities that must eventually be executed (by
the process or the environment) whenever possible. That is, the
occurrence of an event schedules other events that must be executed
in the future in order for the process to progress. The response
events are specified in the graph by the response relation, indicated



graphically by the arrow with a bullet at the source and coloured
blue to make it more easily visible. In the example we thus have a
response relation from the reauthorize to the authorize event.

Moreover, every event can have a list of condition events and
milestone events. In order for an event to be enabled, i.e. its activity
to be executable, its condition events must have been executed at
least once in the past and its milestone events must not currently be
scheduled for execution. In the example, the authorize event is a
condition for the reauthorize event and a milestone for the action
event. The condition relation means in this example that reautho-
rize can not be executed if authorize has not been executed at least
once in the past. The milestone relation means that the action event
is blocked if an authorize event is scheduled for execution.

Finally, in addition to the specification of response, condition
and milestone events, a novel idea of DCR Graphs is the specifica-
tion of events that are excluded and included when an event hap-
pen. Exclusion and inclusion of events have a cross-cutting effect
on the system similar to turning aspects on and off in aspect ori-
ented programming: An excluded event is ignored as condition and
milestone of events and even if it is currently scheduled it will not
be required to be executed unless it is included again.

In the example, the event emergency excludes the authorize
and reauthorize events and the event normal includes the two
events. Note we use the nested DCR Graphs notation introduced
in [6], a relation to a box around events is simply a short hand for
having the relation to all the sub events. Now, if an emergency
event happens (e.g. representing that the condition of the patient
becomes critical), then the events authorize and reauthorize are
excluded. This means that even if authorize is scheduled for exe-
cution and a milestone for action, then it is not disabling the action
event. However, if the normal event happens, then authorize and
reauthorize are again included.

The five relations (condition, response, milestone, include and
exclude) completely describe the dynamic behavior of the process.
Moreover, the state of a running process can be described by a triple
of finite sets of events, (Ex, Re, In) similar to markings of Petri
Nets [15, 16]. The set Ex records the previously executed events,
the set Re describes the events scheduled for execution, and the set
In denotes the currently included events. The set Re thus contains
events schedules as responses to events that have been executed,
but we also allow to define that some events are scheduled in the
initial marking of the graph.

We graphically visualize a marking (Ex, Re, In) by adding a
(green) checkmark to every box for events in the Ex set, a (red)
exclamation mark to every box for events in the Re set, and making
the border dashed of boxes for events which are not in the In set.
A run of a DCR Graph is then a (possibly infinite) sequence of
markings, where the (n + 1)th marking is obtained by executing
one of the enabled events in the nth marking (adding it to the set
Ex) and updating the Re and In sets according to the relations.

An example run of the process in Fig. 1 is shown in Fig. 2. In the
initial marking (at the top), nothing has been executed, the events
action and authorize are scheduled, and every event is included.
This state is described by the marking (), {action, authorize}, E),
where E is the set of all five events. In this state, only the events
authorize, normal and emergency are enabled. The event action
is blocked because it has authorize as milestone and authorize
is scheduled for execution. The event reauthorize is blocked be-
cause it has authorize as condition, and this event has never been
executed.

Now, if the emergency event is executed then the state changes
to the marking ({emergency}, {action, authorize}, E\{authorize,
reauthorize}), shown at the graph in the middle of Fig. 2. That is,
emergency is recorded as executed, whereas action and autho-
rize are still scheduled, but authorize and reauthorize are ex-

cluded. This implies that authorize is not longer considered as
milestone for action, which therefore is enabled. The marking
shown at the bottom of Fig. 2 shows the state if the event action
is executed.
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Figure 2. An example run of the authorization process.

Note that action can be executed several times. However, if
normal is now executed, i.e. if the patient condition is no longer
critical, then system moves to the marking shown in Fig. 3, where
authorize and reauthorize are included again.
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Figure 3. If the normal event is executed, then authorize is again
required before action can be executed.

Since authorize is still scheduled in the marking in Fig. 3,
the event action is not enabled and can not be executed unless



authorize is executed or excluded because the event emergency
is executed again.

Runs may be finite or infinite. We say that a run is accepting
if whenever an event is scheduled, it eventually gets excluded or
executed. As shown in [12, 13], DCR Graphs can be mapped to
the standard Biichi-automata model, characterizing all runs as well
as fair runs as the accepting runs, and subsequently verified for
safety and liveness properties using the SPIN model checker [9].
However, it can also be represented directly (and more compactly)
as a so-called transition system with responses [2], which is simply
a labelled transition system where each state is annotated by a set
of labels, referred to as the response actions. The accepting runs
of a transition system with responses is then the finite or infinite
runs where whenever a label is included in the response set of an
intermediate state in the run, it will be excluded from the response
set in a subsequent state or executed.

It is worth stressing that there is no explicit sequencing of com-
mands in the DCR Graphs process model. This makes it possible to
weave, refine and adapt processes by the general join operator in-
troduced in Sec. 3. If a new event is joined as a milestone for some
existing events in a process, and such that this new event is sched-
uled whenever the existing events are scheduled as responses, then
the new event must be executed before the existing events become
enabled. Thus, the new event is similar to an advice in AOP, that
must be executed before the targetted set of existing events which
correspond to join points.

After briefly recalling the formal definition of DCR Graphs
in Sec. 2, we exemplify this aspect-oriented modularity in Sec. 3
where the DCR Graph shown in Fig. 1 is joined with a another
process describing a context-sensitive request/reply process shown
in Fig. 4

We end by briefly summarizing the techniques for formal ver-
ification and distribution of DCR Graphs developed so-far in the
above mentioned research projects and briefly touch on related
work.

2. DCR Graphs

In this section we give the formal definitions of DCR Graphs. We
employ the following notation.

Notation: For a set F we write P (E) for the power set of F (i.e. set
of all subsets of E). For a binary relation -C E x E and a subset
¢§ C E we write — £ and £ — for the set {e € F | (3¢’ € £ |
e—e)}andtheset {e € E | (3¢’ € £ | e — €)} respectively,
and abuse notation writing — e and e — for — {e} and {e} —
respectively when e € E.

Formally, a DCR Graph is defined as follows.

DEFINITION 1. A Dynamic Condition Response Graph (DCR Graph)

G is a tuple (E,M, —e, 0e— —o —+, =%, L, 1), where

(i) Eis a set of events,
(ii) M € isthemarking, P(E) x P(E) x P(E),
(iii) —eo, 0—, —0, —+, —%C E X E is the condition, response,
milestone, include and exclude relation respectively.
(iv) L is the set of labels and | : E — P(L) is a labeling function
mapping events to labels.

As explained in the introduction, the marking (ii) represents the
state of the DCR Graph and the five binary relations over the events
(iii) define the constraints on the events and dynamic inclusion and
exclusion. Finally, each event is mapped to a set of labels (iv).

In Def. 2 we formally define that an event e of a DCR Graph
with marking M = (Ex, Re, In) is enabled, written G - e, when e
is included in the current marking, i.e. e € In, and all the included
events that are conditions for it are in the set of executed events,
ie. (Inn —e e) C Ex, and none of the included events that are

milestones for it are in the set of scheduled response events, i.e.
(Inn —¢e) C E\Re. We then further define the change of the
marking when an enabled event e is executed: Firstly, the event
e is added to the set of executed events (Ex U {e}). Secondly,
the event is removed from the set of scheduled responses and all
events that are a response to the event e are added to the set of
scheduled responses ((Re \ {e}) U e e—). Note that if an event is
a response to itself, it will remain in the set of scheduled responses
after its execution. Finally, the included events set is updated to the
set (In\ e —%)Ue—+, i.e. all the events that are excluded by e are
removed, and then all the events that are included by e are added.

DEFINITION 2. For a Dynamic Condition Response Graph G =
(E,M, —e, 60— —0, —+, =%, L,1), and M = (Ex,Re,In) we
define that an event e € E is enabled, written G F e, if e €
In A (Inn —ee) C Ex and (Inn —oe) C E\Re. We further
define the result of executing the event e as (Ex, Re, In) ®g e =qey
(ExU {e}, (Re\ {e}) Uee—, (In\ e—%) Ue—+).

Having defined when events are enabled for execution and the
effect of executing an event we define in Def. 3 the notion of finite
and infinite executions and when they are accepting. Intuitively, an
execution is accepting if any event which is scheduled and included
in any intermediate marking, is eventually executed or excluded.

DEFINITION 3. For a Dynamic Condition Response Graph G =
(E,M, —e, 0— —o, —+, =%, L, 1) we define an execution of G
to be a (finite or infinite) sequence of tuples {(Mi, e, ai, M) }ic )
each consisting of a marking, an event, a label and another marking
(the result of executing the event) such that M = Mg and Vi €
[k]al S l(el) /\Gi I e; N\ M; = Ml EBG €; andVi S [k* 1]M; =
M;t1, where G; = (E,M;, —e, 0— —0o, —+, —%, L,1). We say
the execution is accepting if Vi € [k].(Ve € In; N Re;. 35 >
iej =eVe & In;)), where M; = (Ex;, In;, Re;) and M} =
(Ex}, In%, Re)). Let exem(G) and acem(G) denote respectively the
set of all executions and all accepting executions of G starting in
marking M. Finally we say that a marking M’ is reachable in G
(from the marking M) if there exists a finite execution ending in M’
and let Mm—~(G) denote the set of all reachable markings from

A marking in a DCR Graph is accepting, if there are no included
scheduled events that required as responses. Thus, a deadlock state
can be defined as a state where there is an included scheduled
event, but without any enabled events. We say that a DCR Graph
is deadlock free if and only if there is no reachable deadlock state.

DEFINITION 4. For a dynamic condition response graph G =
(E,M, —e, 0— —0o, —+, =%, L, 1) we define that G is deadlock
free, if VM’ = (EX, In’,Re’) € Mm—~+.(Je € EG' FeV (In'N
Re' = 0)), for G' = (E, M, —e, 0—, —0, —+, =%, L, 1).

A DCR Graph is defined to be live if and only if, in every reach-
able marking, it is always possible to continue along an accepting
run.

DEFINITION 5. For a dynamic condition response graph G =
(E,M, —e, 0— —o, —+, =%, L, 1) we define that the DCR Graph
is live, if VM" € My, .acewr (G) # 0.

3. Process Composition

In this section we define a new general join operation on DCR
Graphs which supports modular, aspect-oriented composition and
refinement of DCR Graphs. The join operation is defined relative
to two join relations <1 and >, which specify which events in the
left (right) graph are replaced by events in the right (left) graph.



In particular the join operation allows in special cases for basic
union of graphs and refinement of events, that is, substituting an
event by an entire new sub graph.

Before giving the formal definition, we will give an example of
how to join a process graph with another, where one event in the
former graph is refined by two events in the latter process.

The DCR Graph G, in Fig. 4 below shows a process for a
context-sensitive request/reply pattern.

cancel

Figure 4. A context-sensitive request/reply process

If a request event happens, the reply is scheduled as response.
The reply event is excluded if it is executed, or a cancel event sub-
sequently happens. However, it will be included (and scheduled)
again if a new request event happens. As for the example given in
the introduction, the cancel event may be triggered by some change
of conditions in the context of the process.

We can now use the join operation to define a context-sensitive
request/reply process where the reply needs (context-sensitive) au-
thorization as defined in the DCR Graph Gg.¢p, given in Fig. 1 in
the introduction.

The intention is to merge the two process graphs, but such
that the reply event in G, is replaced by the authorize
and action events in Gguen. The result is the graph shown in
Fig. 5 and formally defined as Grrauth = Grr <> Gautn for
<= {(reply, {authorize, action})} and >= (.

cancel request

N\

 ——

a convinient way to represent relations to both authorize and
action.

To ease readability we may adopt a programming language
notation for the join operation, writing the above join as follows.

Listing 1. Using Join to Authorize a Reply

CSRequestReplyAuth =
join CSRequestReply and CSAuthorization
where reply < {authorize, action}

action | C-<— authorize | ps-—| @Mmergency

n

!

reauthorize

Figure 5. Joining context-sensitive request/reply and authorization
processes

Informally, the two event sets have been joined, replacing the
reply event in the graph G, with the two events authorize
and action in the Gguep graph, while inheriting all relations
between the replaced event and other events in G,-. Recall, that
relations to the box around authorize and action is merely

Below we give the formal definition of the join operator.

DEFINITION 6. Assume DCR Graphs G; = (E;,M;, —e;, 0—;
, =05, =+, =%, Li, ;) where M; = (Ex;,Re;, In;) for i €
{1,2} and join relations <1: E; — P(Ez2) and >: E; — P(E1).
The join of G1 and Gg relative to < and 1> is defined as G1 <>
G2 = (E7 M’ _>.7 ._>a _><>7 _>+, _>%, L, l), where

(i) Ve € dom(<). < (e) Ndom(r>) = () and Ve € dom(>>). >
(e) Ndom(<1) =0

(ii) E = E} UE} for E] = E;\dom(<) and E, = Ez\dom(>)

(iii) M = (Ex,Re,In), where: Ex = Ex; N E] U Exa N Ej,
In=In; NE} Ulny N E5 and Re = Re; N E} U Rey N E5,

(iv) 5>=<"1—=, U =19 U D> 155 U =2 foreach —€ {—e
0, =0, =+, =%} and <= {(e,e’) | e € E1 A€ €«
(e)u{e}} and>={(e,e') |e € Ea A€’ € (e) U {e}}

(V) L= |_1 U L2

L(e)Ubs(e) ifecElnE,
(vi) l(e) = < li(e) ife € E1\E5
la(e) ife € E5\E}

The first condition, (), guarantees that there are no circular refine-
ments. That is, an event in GG; can not be refined by an event in G2
which is also refined by an event in G1 and vice versa. The sec-
ond condition, (i), states that the set of events in the joined graph
consists of all the events of the two graphs, that have not been re-
fined by events in the other graph. The third condition, (#77), defines
the join of the markings of the graphs. It simply inherits the mark-
ings from the two graphs. Note that the fact that markings are also
joined means that we can also apply the join operator on computing
processes. Condition (iv) defines the extension of the relations to
the refining events. The relation < is the reflexive closure of the left
join < relation, i.e. e <l ¢’ if and only if e <1 €’ or e = €’. Similarly,
D> is the reflexive closure of >. The relation <~ '— is then the re-
lational composition of <™ ! (the inverse of <) and the relation —1,
and similarly the relation —; < is the relational composition of —1
and <. That is, (<™ =1 U =1 Q)e’ if

eec—1¢€,0r

a

eec—1 " ande” <é€,or

e’ geande’ — €.

Considering our example in Fig. 5, this definition implies that e.g.
cancel will exclude both action and authorize. But note
that the self-exclude relation on reply, enforcing the “linearity”
constraint that only one reply can only be carried out for each
request, is not kept. This is because relations between events that
are replaced, and thus in particular self-relations are not kept. The
rationale for not keeping these relations are that a join should
allow for removing constraints on the refined events. To keep the
property that the action can only be carried out once for each
request, the refining graph G .+n should have an exclude relation
from action to itself.

Finally, conditions (v) and (v#) define the label set as the union
of the two label sets, and the labeling of events by the original la-
bel for events that are not shared and the union of the label set




for shared events. Since we have not used the label function in the
present paper it can safely be ignored. For the curious reader, the la-
beling function allows to have distinct events with the same “exter-
nal” label, which is useful for some practical applications, as well
as for proving that every Biichi-automaton can be represented by a
DCR Graph. This means in particular that the DCR Graphsmodel
is more expressive that LTL.

As indicated in the beginning of the section, we may derive
operations G\e, Gle < G'] and G U G’ for respectively discarding
an event e, refining an event e by G’ and taking the union of two
graphs G and G’ as special cases of the join operator.

DEFINITION 7. For a DCR Graph G = (E1,M;, —e;, e—;, —;
, =+, =%, Li, ;) fori € {1,2} and e € E1 define

e (Discard) G1\e = G1 <> Gy where <= (e, D) and Gy is the
empty DCR Graph, i.e. the DCR Graph with no events,

® (Refine) Gile < G2] = G1 <> G2 where <= (e, Es) and
>=0,

o (Union) G1 U G2 = G1 <> G2 where <= () and >= ().

As an example of the discard operation, we may remove the
ability to cancel requests in the graph Grrq.¢n in Fig. 5 by discard-
ing the cancel event, taking the graph G,quth \cancel.

As an example of the refine operation, we may add the linear-
ity” constraint to action in Grrquth, i.€. that it can be executed
at most once for every request. This is done with a refine operation
Grrautn[action < Glinact], where Giinaet is the DCR Graph
({action}, (0,0,0),0,0,0,0, (action,action),d, @), ie. the
graph with an empty marking and a single event action related
to itself by the exclude relation, and no other relations.

3.1 Aspect Oriented and Modular DCR Graphs

In an aspect oriented language based on DCR Graphs, we propose
using the join operator to define an operator for adding “before”
advices for a subset of events (the joincut). This could for instance
be done by refining every event e in the joincut by a DCR Graph
that adds an advice sub process as a milestone before the event
e, ad e.g. the authorize event before the action event in
Fig. 1. Then, every time an event e in the join cut is scheduled
for execution, every event in the advice sub process will also be
scheduled for execution, and must be executed before executing e
due to the milestone relation.

Dually, an “after” advice may be added to an event e by joining
a graph that has a response, condition and include relation from e to
the advice sub process, like for the request and reply events
in the G, graph in Fig. 4. This ensures that the advice must be
carried out once after the event e. These two operations can then be
combined to have both ’before” and “after” advices.

Toggling of advices, e.g. as a result of context-events, can be
achieved by joining in events that include and exclude the advice
sub processes, e.g. like the normal and emergency events in
Fig. 1. One can further constrain when an advice can be toggled as
in Fig. 4, where the reply action can be cancelled, but only after the
request has happened.

Finally, the join operator can also be considered as a general
way of allowing modular definition of DCR Graphs. However, it
should be stressed, that the join operator provide no guarantees for
preserving safety and liveness properties. Indeed, it is easy to join
graphs and achieve a circular condition dependency between events
that may lead to a deadlock state if one of the events are required
as response (and can not be excluded). Similarly, the join operator
may introduce the possibility of a life lock, i.e. a DCR Graph with
an infinite run that is not accepting and has no way of breaking out
of the loop.

It is possible to verify safety and liveness properties of the com-
posed DCR Graphs, e.g. by mapping the DCR Graph to a Biichi-
automaton and verify the properties using the SPIN model checker
as shown in [12]. This is however time consuming when the size of
the processes grow. A more efficient verification currently explored
is to carry out the verification on the corresponding transition sys-
tems with responses. Finally, an even more efficient guarantee of
well-behaved modular composition, which we are currently inves-
tigating, is to define a notion of behavioral type for DCR Graphs
based on the work on session types, which then guarantee that 1)
well-typed graphs are safe and live, and 2) if compatible, well-
typed DCR Graphs are joined, then the resulting graph is again
well-typed.

4. Conclusion

We have proposed the declarative, event-based DCR Graphs model
as a foundation for modular construction of context-sensitive,
aspect-oriented processes. Concretely, we showed how the dynamic
exclusion and inclusion primitives of DCR Graphs allow to turn the
relevance of events as conditions/milestones and responses for any
other event in the model on and off. It was exemplified by a simple
authorization process fragment, where the need for authorization
can be toggled by events signaling wether the context situation is
an emergency or normal. Another example was a request/reply pro-
cess fragment, where the reply can be cancelled by a cancel event in
the context. Moreover, we presented a new join operator for DCR
Graphs, allowing both modular composition and refinement, exem-
plified by joining the request/reply process and the authorization
process, by which the reply was refined into two events, an action
event (i.e. representing the reply) and an authorization event, and
the remaining events and relations for authorization were inherited.

A key point is that aspects are not turned on and off when
processes are initiated, but asynchronously at any point during
the execution of the process. Another key point is that the formal
semantics allows us to verify if the defined process, e.g. obtained
by joining processes, have safety or liveness problems. As shown
in [12, 13], DCR Graphs can be mapped to Biichi-automata. In [12]
an implementation of this mapping and its application to verify
safety and liveness properties of DCR Graphs using the SPIN
model-checker are described. Recently we have developed a model
checker that allows to verify properties directly on DCR Graphs. It
avoids the translation to Biichi-automata and seems more efficient,
however this is still work in progress. In [7] we have developed a
technique for distributing DCR Graphs, which is somehow reverse
to the composition operator. It allows to divide a DCR Graph in a
collection of (not necessarily disjoint) sub graphs, which can then
be executed at different locations. Finally, the fourth author has
developed a prototype implemenation of PEPL [4] where events
are extended with data, and the third author has implemented a
workflow engine at Exformatics A/S based on DCR Graphs with
data.

Related work: It goes beyond the scope of the present paper to
give a comprehensive overview of related work. Context-oriented
programming (e.g. [8, 18]) introduces the notion of layers in nor-
mal object-oriented, block structured programming languages such
as Java, allowing features (aspects) to be activated or deactivated
depending on the current context. The selection of active layers
are typically done using the with primitive when methods are in-
voked. In [10], the event-driven and context-oriented approaches
are combined, allowing events triggered in other threads to activate
and de-activate layers somewhat similar to the include and exclude
primitives of DCR Graphs.

The use of declarative primitives for the description of pro-
cesses, and workflow processes in particular, is also treated in the
work on Declare [19, 20]. Declare is similar to DCR Graphs in



that processes are specified by temporal relations between events,
indeed, the condition and responses relations are specified using
the same graphical notation. Another related approac would be
to specify processes using a temporal logic like LTL [14, 17]
or CTL [1]. In [14] is shown that primitives similar to those
used in DCR Graphs can indeed be represented in LTL. How-
ever, neither Declare, LTL nor CTL have explicit operators for
the inclusion and exclusion of events as in DCR Graphs. Con-
sequently, toggling of aspects can not simply be added by join-
ing additional constraints. It is instead necessary to rewrite the
logical formula (or Declare process) in a non trivial way. As an
example, consider the request-reply-cancel pattern in Fig. 4. The
request-reply pattern alone would typically be expressed in LTL by
a formula like G(request = Freply) A (Freply —
—replyUrequest) A G(reply =  N(Freply —
—replyUrequest)), where G reads Generally, F reads Future,
U reads Until and N is the Next operator. That is, 1) it is gen-
erally the case that if a request happens, then a reply happens
in the future, 2) if a reply happens, then that reply can not hap-
pen before at least one request has happened, and 3) if a reply
happens, then if another reply happens some time in the future,
it will not happen before a new request has happened. Now, to
add the cancel option, it is ncecessary to rewrite the formula, it is
not possible simply to add new constraints e.g. as a conjunction.
This is because 1) a reply is not required if a cancel event hap-
pens, i.e. one must change the first conjunct to G(request —>
F(reply V cancel)), 2) after a cancel event, a reply should
not occur until we have seen a new request, i.e. the third con-
junct becomes G(reply V cancel — N(Freply —
—replyUrequest)) and 3) a cancel event should not occur be-
fore the first request has happened, i.e. we should add an additional
conjunct (F'cancel = -—icancelUrequest). In general, if
the LTL formula does not have this specific form as given by DCR
Graphs, we claim that it would be non-trivial to define how for-
mulas should be changed to toggle aspects on and off, and at least
not as simple as the join operator of DCR Graphs proposed in the
present paper.
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