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ABSTRACT: Bitcoin is a cryptocurrency whose transactions are recorded on
a distributed, openly accessible ledger. On the Bitcoin Blockchain, an owning entity’s
real-world identity is hidden behind a pseudonym, a so-called address. Therefore,
Bitcoin is widely assumed to provide a high degree of anonymity, which is a driver
for its frequent use for illicit activities. This paper presents a novel approach for de-
anonymizing the Bitcoin Blockchain by using Supervised Machine Learning to
predict the type of yet-unidentified entities. We utilized a sample of 957 entities
(with ≈385 million transactions), whose identity and type had been revealed, as
training set data and built classifiers differentiating among 12 categories. Our main
finding is that we can indeed predict the type of a yet-unidentified entity. Using the
Gradient Boosting algorithm with default parameters, we achieve a mean cross-
validation accuracy of 80.42% and F1-score of ≈79.64%. We show two examples,
one where we predict on a set of 22 clusters that are suspected to be related to
cybercriminal activities, and another where we classify 153,293 clusters to provide an
estimation of the activity on the Bitcoin ecosystem. We discuss the potential applica-
tions of our method for organizational regulation and compliance, societal implica-
tions, outline study limitations, and propose future research directions. A prototype
implementation of our method for organizational use is included in the appendix.

KEY WORDS AND PHRASES: cryptocurrencies, Bitcoin, blockchain, cybersecurity,
supervised machine learning, online anonymity, cybercrime.

Introduction

Cryptocurrencies are digital assets that use a decentralized control system and
cryptography to facilitate, secure, and verify transactions and create additional assets
[84]. Bitcoin is a type of cryptocurrency that was first described in 2008 [83].
Recently, cryptocurrencies in general and Bitcoin in particular have attracted
increased attention of the researchers from diverse academic fields [6, 24, 59], as
well as practitioners due to its unique characteristics such as the absence of centra-
lized control, safeguards against equivocation and assumed high degree of anonymity.
Because of Bitcoin’s comparably high level of anonymity, it has been labelled as the
go-to currency for illicit activity. The shutdown of the drug market Silk Road1

provides the most well-known example in this context (see [32] for an analysis of
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the Silk Road). Moreover, recent articles and reports [54, 74, 75] have stated that
Bitcoin has been used for terror financing, thefts, scams, and ransomware. Financial
regulators, law enforcement, intelligence services, and companies who transact on the
Bitcoin Blockchain have become wary observers of technical developments in,
economic issues with, and the societal adoption of Bitcoin [6, 24, 59].
Our paper aims to better understand the different kinds of transactions in the Bitcoin

ecosystem in order to better informmanagerial and organizational aspects of regulation
and compliance. We do so by developing a novel approach based on Supervised
Machine Learning to de-anonymizing the Bitcoin ecosystem to help identify high-
risk counterparties and potential cybercriminal activities. For organizations, interacting
with high-risk counterparties on the Bitcoin Blockchain may yield negative conse-
quences, either because of legal obligations (such as anti-money laundering proce-
dures) or reputational risks. For governments, the fact that Bitcoin is used to carry out
money-laundering, terror financing, or cybercrime poses a considerable problem. In
such cases, uncovering the anonymity of the parties would be legally permissible and
ethically desirable, but could be technically infeasible, according to popular belief
about the robustness of anonymity in the Bitcoin ecosystem. However, previous
research [78, 92] has demonstrated that it is indeed possible to cluster together
Bitcoin addresses and link such clusters to real-world identities. These research find-
ings go against the widely-held belief that users’ identities are protected when using
Bitcoin. Furthermore, prior research in the management information systems domain
on cyber threat intelligence has proposed several approaches to de-anonymization of
different entity types [1, 2, 18, 69, 98].
Our work builds upon and extends this area of research and addresses the call for

research that aids better regulation of cryptocurrencies in general and Bitcoin in
particular [5, 63, 71]. Knowing that Bitcoin addresses can be clustered, identified,
and categorized, we investigate the true level of Bitcoin’s anonymity to determine
the extent to which it is possible to reveal the identity of users or organizations in
the Bitcoin ecosystem by employing a Supervised Machine Learning approach.

Problem Formulation and Research Question

For this research paper, we collaborated with the blockchain analysis company
Chainalysis [28], which will be referred to as the data provider in the remainder of the
paper. The data provider has clustered, identified, and categorized a substantial number of
Bitcoin addresses manually or through a variety of clustering techniques (see the section
Clustering Concepts). However, the vast majority of clusters on the Bitcoin Blockchain
remain uncategorized. Our research aims to find out if we can predict that a yet-
unidentified cluster belongs to one of the following pre-defined categories: exchange,
gambling, hosted wallet, merchant services, mining pool, mixing, ransomware, scam, tor
market, or other. We recognize the fact that there are additional cluster types participating
in the Bitcoin ecosystem, but the scope of this research will be limited to the aforemen-
tioned categories as those are the categories provided by the data provider to regulatory
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authorities and organizational users. At the time of writing, to the best of our knowledge,
there have not yet been any research publications utilizing such rich data set in conjunc-
tion with SupervisedMachine Learning. Furthermore, alternative data sources, where the
labelled data set has as many identified clusters as the data provider’s, remain unknown.
Based on the aforementioned discussion, our overarchingmain research question is stated
as follows:

Research Question: How can one estimate the extent of cybercriminal and
illicit activities in the Bitcoin ecosystem by uncovering pseudonymity of Bitcoin
blockchain technology?

The remainder of the paper is organized as follows: in the section to follow, a brief
overview of related work is provided and section on Conceptual Framework
describes key concepts with regard to cryptocurrencies, Bitcoin, and Blockchain.
Methodological details are discussed in Methodology section, and The Results
Section presents an overview of the results and provides technical interpretations.
Finally, in the Discussion section, we provide a substantive interpretation of our
results, discuss organizational implications, address limitation of our current work,
and outline future work directions.

Related Work

In this section, we will review the existing state-of-the-art related to our work on
de-anonymizing entities in the context of cryptocurrencies. First, we will provide an
overview of related research from the information systems perspective, and then we
summarize various initiatives taken up by legal communities toward regulatory
framework for cryptocurrencies. Finally, we will also provide a concise description
of current state-of-the-art de-anonymizing entities in cryptocurrencies and conclude
by stating how our approach is different from the existing research.

Information Systems Perspective

From an Information Systems (IS) perspective, the state- of-the-art that is
relevant to our work is organized into two parts as shown in Appendix-1,
Table 1. The first part (Cyber Threat Intelligence) is methodological and dis-
cusses the extant literature on cyber threat intelligence; whereas, the second part,
which is conceptual, discusses existing research on blockchain and cryptocur-
rencies and is presented in section after next.

Cyber Threat Intelligence

In this subsection, we review related research work related to anonymity, identifying
the fraudulent traders, identifying the cybercriminal behavior, and financial fraud
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detection in the context of electronic markets and commerce channels from the
management information systems journals and position our work in the context of
existing research. Results are presented in part one of Appendix 1, Table 1. First, many
studies [1, 2, 18, 69, 98] utilized machine learning approaches and text mining methods
on the contextual information. Contextual information consisted of customer reviews,
participant messages, organization or industry specific information to perform various
kinds of sentiment analysis, and stylometric analysis to derive indicators or clues about
fraudulent behavior and cybercriminal activities that identify organizations and indi-
viduals who resort to such types of malpractices. Second, identifying fake websites and
phishing websites is another important research direction where genre tree kernel
methods with fraud cues, statistical learning theory, and classification-based methods
were employed to identify the differences in the characteristics between legitimate and
phishing/fake websites, such that fraudulent behaviour can be identified among the
online web applications [3, 4]. Third, from the Information Systems point of view,
several research works [1, 3, 4, 70, 109] predominantly employed Design Science
theory as a way to validate or evaluate their researched phenomenon or prototype or
methodology. Similar to the aforementioned research, our method also uses machine
learning approaches to de-anonymize suspicious entities (such as ransomware or
darknet market) who are involved in fraudulent or cybercriminal activities. Finally,
in the context of cryptocurrency markets and in relation to cyber threat intelligence, in
terms of organizational implications of our research, the focus of banks and financial
institutions will be more on preventing or block-listing transactions with suspicious
entities. Therefore, the findings of the research work [11] recommending the usage of
Trusted Third Party (TTP) in e-commerce markets is quite relevant. For cryptocurren-
cies, our method of de-anonymizing the suspicious entities or organizations will be
quite instrumental in the hands of governmental organizations or some trusted financial
institutions if they act as a TTP in the domain of cryptocurrencies.

Blockchain and Cryptocurrencies

Within the information systems discipline, current research on blockchain technologies
and cryptocurrencies is still in the nascent stage, maybe because the blockchain based
technologies are still considered as an emergent phenomenon. Therefore, we were not
able to find many research articles from the primary information systems journals with
respect to blockchain technologies and cryptocurrencies. However, we gathered all the
recent research papers from major information systems conferences and journals and

Table 1. Raw and Pre-processed Data Size

Observations Raw Preprocessed

Labelled Data 957 85 GB 1.4 MB
Uncategorized Data 153,293 157 GB 97 MB
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the summary of review results is presented in part II of the Appendix 1, Table 1. First,
the most notable research work on blockchain based technologies is Beck and Beck
et al. [15, 17], which forecasts that in the near future the blockchain technologies will
empower organizations to implement solutions using distributed ledger technologies.
These technologies will handle contracts and transactions among the organizations in
a decentralizedmanner without any need of having their own legal entities and will lead
to the emergence of decentralized autonomous organizations. Second, since informa-
tion systems research on the blockchain technology is in the nascent stage, several
research frameworks [17, 86, 94] were proposed to study organizational adoption
challenges and IT governance, for example, in terms of decision rights, accountability,
and incentives for the organizations, which can reap benefits from decentralized solu-
tions using these technologies. Development of the proof of concept prototypes for
blockchain technologies using design science guidelines [16, 31, 56, 82] is also an
increasing trend in recent years. Finally the research on the cryptocurrencies per se is
rather limited [48, 85], when compared to the more general research focus on block-
chain based applications for organizations.

Legal and Regulatory Perspective

Blockchain-based technologies have attracted significant attention from researchers in
the area of law, especially on the topics of and aspects in regulation and governance of
cryptocurrencies and blockchain based applications such as smart contracts. The
relevant extant literature research on the legal aspects of Blockchain regulation,
compliance, and governance is summarized in detail in Appendix 1, Table 2.
As shown in Appendix 1, Table 2, we characterize the implications from

current research on blockchain regulation into two distinct and opposing
research streams: stringent versus open-minded regulation. First, the stream of
research studies [5, 63, 71] that is primarily concerned with money laundering
and digital crime using cryptocurrencies and their economic and social impacts
on societies argues for establishing clear and stringent regulations, compliance
protocols, and guidance frameworks for the cryptocurrency industry. On the
other hand, a significant amount of research [35, 62, 76, 80, 104, 107, 108]
posits that blockchain is a highly disruptive and innovative technology and
argues for a more open-minded regulation without attempting to stop or slow
its growth with suggestions to amend the existing legal provisions if necessary
to create a workable regulatory model. Moreover, it is argued that a proper
regulatory model that does not constrain the innovation of cryptocurrencies will
allow them to self-regulate within a vaguely defined regulatory framework. At
the same time, a proper regulatory model that uncovers the actors in the case of
necessities (e.g., money laundering) will help the cryptocurrencies to get rid of
their infamous reputation and potentially revolutionize organizations.
Apart from cryptocurrencies such as Bitcoin, prior research also focused is on

the regulation and compliance in terms of using blockchain technology for
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various applications such as: digital-asset transfers [62], property rights [9],
cryptosecurities [67], derivatives markets [106], smart contracts [102], and so
on for financial, accounting, and other administrative domains. Unlike the case
of cryptocurrencies, the research from the law disciplines argued for usage of
blockchain technology for developing applications in these areas, as it would
enhance transparency in these application areas by removing hidden secrecy
and provides a way for more efficient document and authorship verification,
title transfers, and contract enforcement. Finally, just to provide an example of
the scope of research regarding blockchain regulation and governance, Young
[115] advocated for smart constitution, a blockchain based implementation for
governance, which will make government operate in compliance to smart
constitution laws in a visible manner and also prohibits operation outside of
its mandate.
Positioning this paper in the extant literature on regulation and compliance of

cryptocurrencies previously discussed, our method helps unmask fraudulent and
criminal actors and could be instrumental for trusted third party providers, such as
governmental agencies or regulators, to implement flexible regulatory and compli-
ance measures for cryptocurrencies, without burdening law-abiding citizens who
transact in cryptocurrencies.

Anonymity Perspective

Bitcoin allows end-users to create (pseudo-)anonymous financial transactions with-
out the need for disclosing their personal information. This is done by generating
a pseudonym for the user, also called “address.” The apparent anonymity and ease
to create pseudo-anonymous financial transactions attracted users who value their

Table 2. Distribution of Cluster Categories

Category Label Cluster observations

darknet-market 46
exchange 306
gambling 102
hosted-wallet 11
merchant-services 17
mining-pool 67
mixing 10
other 57
personal-wallet 293
ransomware 21
scam 23
stolen-bitcoins 4
Total observations 957
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privacy on one hand and, on the other hand, it has also attracted cybercriminals who
want to use it for ransom-ware and other illegal activities [21, 64, 105]. Therefore,
analyzing the pseudo-anonymity and understanding the traceability of Bitcoin flows
to investigate the use of it for criminal or fraudulent purposes is of high academic
importance as well as practical relevance. Some of the focus areas of research in
this direction are applying heuristic approaches or statistical methods [7, 37, 64, 78,
92, 95, 105]. For instance, clustering the Bitcoin addresses by mapping the network,
analyzing the traffic and complementing it with external sources of information was
explored in Reid and Harrigan [92] using appropriate representation of two net-
works derived from the transaction history of Bitcoin. In a similar direction,
heuristic clustering was employed to group Bitcoin wallets based on evidence of
shared spending authority and using categories that are labelled from the interac-
tions with various services to characterize longitudinal changes in the Bitcoin
market [78]. Statistical properties of the Bitcoin transaction graph were analyzed
in Fleder et al. [37] and Ron and Shamir [95] to identify behavioral patterns of
different types of users. One of the interesting findings is that the majority of the
minted bitcoins remain inactive and hidden in addresses that never participated in
any outgoing transactions.
Privacy guarantees of Bitcoin were analyzed using simulation experiments by

replicating the behaviors and transactions of the Bitcoin Blockchain and showed
that it is possible to uncover almost 40% of the users’ profiles even after adopting
the Bitcoin’s recommended privacy measures by the users [7]. By observing real-
time transaction relay traffic over a period of time, the research in Koshy et al. [64]
showed that it is possible to map Bitcoin addresses directly to IP data; thereby, it is
possible to reveal the ownership behind the Bitcoin addresses. Alternately, the
research in Goldfeder et al. [50] showed that if a user paid on shopping websites
using a cryptocurrency then a third party tracker can link the transaction informa-
tion to the user’s cookie and then further to link it to the user’s real identity.
Furthermore, they also identified that, if a third party tracker is able to link two
such online purchases from the same user onto the blockchain, then it possible to
identify the entire cluster of addresses and transactions, even if the users employed
blockchain anonymity techniques to hide their identity.
Many researchers also focused on the flaws of the Bitcoin Blockchain and

explored alternative cryptocurrencies as well as proposals for improvements and/
or new methods to bring anonymity to its users. Some of the research explored in-
depth investigation on Bitcoin’s technological workings, showing its technological
flaws and consequent suggestions on how to address them [14], a protocol that
enables anonymous payments in Bitcoin and other currencies that relies on tech-
nology commonly used by mixing services [25]. In this regard, an important
research contribution is the development of an alternative to Bitcoin named
Zerocash with zero-knowledge proofs [99] and also privacy-enhancing overlays
in Bitcoin from a theoretical perspective [77].
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For the majority of previous research, researchers collected the Blockchain data
on their own, crafted their own categories, and then attempted to de-anonymize
entity types. In contrast to the existing research, since the data provider supplied
us with a rich data set that is already clustered, categorized, and identified
addresses for forensic purposes, our analysis approach focused on utilizing
Supervised Machine Learning methods to categorize the yet-unidentified entities.
To the best of our knowledge, there is no other research work that focused on de-
anonymizing the Bitcoin Blockchain using Supervised Machine Learning techni-
ques. Even though there is related work where the authors collect raw data,
perform their own clustering, and use it as input for a classification problem,
our research seminally leverages data that had been previously enriched via co-
spend heuristics, intelligence-based and behavioral clustering (see Clustering
Methodology), resulting in a dataset that has the highest coverage of labelled
entities at the time of writing.

Conceptual Framework

This section describes the key concepts that inform our empirical wok on de-
anonymizing the Bitcoin Blockchain using Supervised Machine Learning. First, we
present basic concepts and concise discussion on the anonymity and identity in the
context of decentralized networks such as blockchain. Second, we present the basic
foundational concepts of blockchain technologies followed by the technological
working of the cryptocurrencies. Third, we present an overview of clustering tech-
niques applied to cluster Bitcoin addresses and then, finally, the basic concepts
behind different supervised machine-learning algorithms used in this work will be
presented.

Anonymity

In general, the notion of anonymity can be defined as a means to obtain “freedom
from identification, secrecy, and lack of distinction” [100, p. 875], which can be
further characterized as a phenomenon where one can conceal his identity from
other parties [26]. With the advent of the Internet and subsequent developments in
electronic commerce, communications, and social media, as well as the innovations
such as Web 2.0, there is an ever growing discourse on anonymity, especially both
in favor of and against the anonymity on the online environments. The arguments in
favor of anonymity perceive the online anonymity as a necessary tool to preserve
information privacy, by protecting confidential information from untrusted plat-
forms and parties [26]. However, anonymity is frequently abused and creates an
environment for hate speech and defamatory remarks by individuals who behave
irresponsibly with impunity [68, 100].
With the evolution of public-key cryptography and software agents, such as

anonymous remailer servers in the 1990s, communication over the Internet can
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be created with a high-degree of certainty such that the identity of the originator of
the communication can be concealed [40]. These techniques paved the way for
creation of pseudonymous entities in the Internet communication, using which
messages can be both sent and received by still concealing the identity of the
originator. Pseudonymity differs from anonymity in the sense that anonymity
requires removal of all identity information, whereas pseudonymity still allows
for creation and continuation of a pseudo/alternate identity, which allows for partial
concealment of the real identity information [42, 100]. As proposed by Froomkin in
the mid-1990s [26, 40, 41], anonymity/pseudonymity in the context of the Internet
and electronic communication can be distinguished as four different types.

● Traceable anonymity: In traceable anonymity, the recipient of the commu-
nication does not have knowledge regarding the identity of the sender. The
sender’s information is only available to the agent/system that acts as an
intermediary in the communication. Traceable anonymity is sufficient for
many general-purpose scenarios (such as posting messages to newsgroups),
even though it offers the lowest security out of all the four categories.

● Untraceable anonymity: The identity of a sender in a communication is not
at all identifiable in the case of untraceable anonymity. For example, one
could achieve this sort of anonymity by routing the communication through
a series of anonymous remailers (e.g., chained remailing [40]) and using the
existing encryption techniques. Cryptocurrencies follow a similar approach
(e.g., Bitcoin uses mixing, see sec. Cluster Categories) to reduce the trace-
ability of the transactions and to complicate the transaction analysis.

● Untraceable pseudonymity: In the case of untraceable pseudonymity, the
sender of a communication will communicate using a pseudonym, which is
not identifiable. In comparison to the untraceable anonymity, due to usage of
pseudonym in untraceable pseudonymity, the continuation of this pseudo-
identity is maintained over a period of time and, thereby, builds an image and
a reputation just like in the case of any other online personality or digital
persona. As an example, Satoshi Nakamoto is a pseudonym representing
a person or a few people, who started Bitcoin as a peer-to-peer electronic
cash system in 2013. The real identity of the person/people who own this
pseudonym is still not known today, but this pseudonym continues to build/
maintain its digital profile as the one who introduced Bitcoin cryptocurrency.
Normally, pseudonyms are used consistently over a period of time, whereas
anonymous identities are used only once. Asymmetric cryptography is quite
instrumental in maintaining the pseudonyms by facilitating transmission of
signed messages (signed transactions in case of cryptocurrencies) in the name
of pseudonym. The signed messages or digital signatures can neither be
forged nor linked to the true identities (as long as the keys are not linked
to the real identities).

● Traceable pseudonymity: Unlike the untraceable pseudonymity, it is possi-
ble to trace the pseudonym of the sender in a communication, not necessarily
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by the receiver of the messages, but by an intermediary or a third party,
which might have assigned that pseudonym. Moreover, a distinction can be
made in traceable pseudonymity based on whether the pseudonym was issued
formally by a third-party provider/intermediary or if the pseudonym is self-
chosen by the holder of the pseudonym.

Anonymity in electronic communication is an empowering technology. Being
anonymous gives the power to users to do things without being identifiable,
which could lead to the development of enhanced societies and flourishing
human communications. Among the four types of anonymity previously explained,
untraceable anonymity provides the highest level of protection and it allows com-
munication without fear of jail, harm, or other retaliation [41, 43].

In places that are less free, avoiding retribution for saying the wrong thing
may be a matter of life and death. Political dissidents, ethnic minorities,
religious splinter groups, people campaigning for women’s rights or gay
rights, and many others are, or have been, subject to the risk of genuine
and very palpable violence. If they wish to speak or write for their causes they
need a means to protect themselves. Anonymity is one such tool [43, p. 121].

In Group Support Systems (GSS) research, anonymity is considered a fundamental
concept, which is expected to reduce fear of social disapproval and evaluation, as
well as enhance participation in group work and, thereby, not only lead to an
increase in the number of ideas generated, but also leads to improvement in the
quality of decisions [90]. Profiling is another major phenomenon where anonymity
is a tool. Profiling became a basis for stereotypical discrimination based on
characteristics such as ethnic backgrounds, sexual orientation, political opinion,
among others, and especially for commercial entities who profile users for market-
ing purposes to exercise their market power through price discrimination.
Anonymity, however, can be used as a tool to protect against profiling [36].
According to Froomkin,

… digital anonymity may be a rational response to a world in which the
quantity of identifying data on each of us grows daily, and the data become
ever easier for government and private parties to access [40, par. 50].

Cryptocurrencies and the Dark Side of Anonymity

In contrast to the arguments in favor of anonymity, untraceable anonymous/pseu-
donymous communication opens doors for many illegal and criminal activities. The
introduction of anonymous and untraceable communication has also led to a wide
range of interpersonal transactions that cannot be easily traced. Especially in the
context of cryptocurrencies, cybercriminal activities such as money laundering,
extortion, blackmail, ransomware, drug, and other illegal activities have paved the
way for the dark side of anonymity [27].

REGULATING CRYPTOCURRENCIES 47



In the context of decentralized peer-to-peer networks, blockchain and crypto-
currencies use traceable pseudonymity techniques to perform communication
and transactions. For example, cryptocurrencies use a randomly generated pair
of keys to perform transactions to have traceable pseudonymity with self-
selection of keys by the users, where one of the keys acts as a pseudonym for
the user and the other key is used to sign the transactions. In fact, Bitcoin, as
a best practice, advocates their users generate a new key pair (i.e., new pseu-
donym) for each transaction to protect the privacy of their transactions [20]. As
it is difficult to link the pseudonyms to the real identities, the pseudonymity in
cryptocurrencies paved the way for criminal and illegal activities on one hand
and also made it difficult to implement regulatory measures for anti-money
laundering [49, 81]. Particularly during the recent years, Bitcoin offered oppor-
tunities for fraud and tax evasion [103], a money laundering route for cyber-
criminals [49], drug dealing on the dark web and Silk Roads [110]. At the same
time, Bitcoin and other cryptocurrencies also have legitimate users who wish to
transact using the pseudonymity features, and their aspirations should not be
bundled with any association with criminal and illegal activities regarding
cryptocurrencies [108].
Even though it is not possible to directly link the pseudonyms with real

identities, it is possible to profile the pseudonyms and their connected transac-
tions to some extent based on their transactional behavior that is globally
visible, using various techniques described in sec. Anonymity Perspective. In
the context of anonymity, our work is primarily focused on developing techni-
ques for profiling and de-anonymizing the entities and their connected pseudo-
nyms that are linked to the cybercriminal and illegal activities, rather than
identifying the legitimate users of cryptocurrencies, who would like to use the
pseudonymity features of cryptocurrencies in a genuine manner.

Blockchain and Cryptocurrencies

The blockchain concept originated in the development of digital currencies as peer-
to-peer versions of electronic cash [12, 83]. Bitcoin is the first known application of
the blockchain technology and the Bitcoin Blockchain is basically a distributed
database of records of Bitcoin transactions. Blockchain is a chain of digital signa-
tures using public-key cryptographic protocols [79]. Built on the concept of highly
distributed storage systems [113], blockchain technology can be considered
a distributed data store with state machine replication using peer-to-peer protocol,
where the transactions are the atomic changes to the stored data, which are grouped
into blocks [73]. The integrity and tamper-resistance of the transactional data is
guaranteed through linking of hash values among the blocks. Blockchain uses
a distributed ledger as a decentralized data store, which is usually maintained by
independent parties or nodes. The consistency of the transactional states of different
distributed nodes is achieved through agreement by the consensus of the majority
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nodes. Building on the fundamental concepts of the Byzantine fault tolerance
algorithm [65], blockchain provides tolerance against arbitrary malicious behavior
by adversaries. Blockchain also guarantees a consistent distributed transactional
state that leads to identical changes among the independent nodes, even if some of
the nodes are compromised or non-responsive due to failures. By using timestamp-
ing of its transactions and messages, blockchain provides universally verifiable
proofs for existence or absence of a transaction in the distributed transactional state
and the underlying cryptographic primitives using hash functions and digital sig-
natures provide guarantee that these proofs are computationally secure and verifi-
able at any point of time [73]. These timestamped transactions based on
cryptographic proofs in a distributed data store eliminate the need to have
a central and trusted third party organization to authorize or agree to these transac-
tions; thereby, trust is distributed equally among the participating independent
nodes of the blockchain instead of a central authority. Moreover, in terms of
accountability, blockchain uses cryptographic schemes that are expensive to com-
pute, such as Proof-of-Work [12, 83]; and anchoring with cryptographic hashes
[21], which provides guarantees against the system attacks and risk of system
corruption, by making it extremely difficult to falsify the proofs and provide long-
term non-repudiation [73].
Blockchain technology came to light when Bitcoin, a decentralized digital cash

system, was introduced as a peer-to-peer cryptocurrency in 2009 [83] and as of
2018, Bitcoin is the largest cryptocurrency with a market capital of approximately
more than 100 billion USD [34].
Moreover, an important feature of Bitcoin is maintainability of its currency

value without any central authority or governmental administration. Bitcoin
usage is based on transactions that are stored in the public distributed ledger
(datastore) using blockchain technology. Bitcoin uses a Proof-of-Work (PoW)
[12, 83] cryptographic scheme to enhance the security of the blockchain network
against attacks [22]. As an example, an adversary may broadcast their own
version of the blockchain by adding some false transactions to the network. As
the security of the blockchain does not rely on any single authority, the
independent nodes are not able to determine whether the broadcasted version
of blockchain is valid or not. In order to avoid such types of attacks, Bitcoin
uses a PoW hashing scheme in the form of mining blocks, where each node that
participates in mining is required to solve a computationally challenging task to
find a valid header conforming to certain constraints for the newly created block
in the form of cryptographic hash. The consensus algorithm makes sure that the
blockchain with the greatest cumulative blocks with valid block headers is
deemed to be the validated chain. Therefore, even the adversary needs to
solve the same computationally challenging tasks to find valid block headers
for their newly created blocks, in competition to the rest of the blockchain.
Therefore, they will only be successful if they can obtain significant computa-
tional resources (e.g., ≥51% blockchain network resources). Independent nodes
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that participate in the mining of blocks are incentivized in the form of new coins
of cryptocurrency for their work in producing new valid blocks.

Bitcoin Cryptocurrency

In order to transact on the Bitcoin Blockchain, a user receives a pseudonym, an
address. A user may create as many such addresses as desired to enhance anon-
ymity (it is advised as best practice to create a new address for each new transaction
[20]). A transaction primarily consists of four main elements: 1) Transaction hash
value, 2) Address of the sender, 3) Address of the receiver, and 4) Amount. The
Bitcoin Blockchain holds additional data, which will be discussed later in this
paper. Furthermore, a transaction may involve more than one input and/or output
address, making it challenging to link multiple transactions to one person. This
manifests through, for example, the so-called change address: Each transaction
initially draws all Bitcoin from a user’s account balance and, then, sends one part of
the amount to the desired receiver address and the remaining part (the change) to
a change address. The change address can be the same as the original sender
address, but it is a best practice to create a new change address for each transaction
to have anonymity in the Bitcoin world. Subsequently, to approve a transaction, the
sender must use the corresponding private key to sign a transaction. The transaction
is sent to the network, collected into blocks along with other transactions after being
verified and, then, accepted into the Blockchain by the consensus of all peers.
Finally, the transaction is broadcast to the network and becomes publicly visible.
The power of the Bitcoin Blockchain lies in the fact that each and every interac-

tion is recorded on an immutable, publicly accessible ledger. This makes Bitcoin
well-suited for high-trust applications (e.g., money transfer) that traditionally
require a reliable intermediary (e.g., clearing houses) to validate transactions. To
preserve the anonymity of Bitcoin users, their identities are hidden behind an
address, also referred to as public key or pseudonym. This pseudonym cannot
directly be linked to the real-world identity of the user, if the user chooses to
generate a new pair of keys for each transaction. The problem with Bitcoin’s
architecture is that once a pseudonym is linked to a real-world identity, it effectively
reveals all transactions undertaken by that pseudonym, with no way of deleting the
corresponding transaction history. Such identity-revealing linking can occur either
through voluntary disclosure (e.g., when a vendor publicizes its own address in
order to receive Bitcoin from its customers) or through involuntary disclosure (such
as data leakages, addresses taken from court documents, or data exchange partner-
ships between Bitcoin companies). Such clear-cut identification is, however, sel-
dom possible. However, there are a variety of methods to effectively narrow down
the scope of who could own a given Bitcoin address. As Reid et al. [92] found, it is
possible to link the change address of a transaction back to the initial user.
Furthermore, it is possible to cluster individual addresses that are controlled by
the same person using different clustering techniques [105]. Moreover, it is even
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possible to map IP addresses to Bitcoin addresses as described in sec. Anonymity
Perspective. Our approach is to narrow down the scope of possible owners of
a cluster by predicting the category of a yet-unidentified cluster using Supervised
Machine Learning approaches.
As shown in Figure 1, an entity is defined as a person or organization believed to

be in control of a single or multiple addresses. A cluster is defined as a group of
addresses controlled by one entity. Corresponding to the entity’s main activity or
nature, it can be assigned a category. The data provider currently assumes that
every entity can only belong to one category at a time, which means that the
categories are mutually exclusive. Figure 1 shows an example of two Bitcoin
clusters (Coinbase and Customer X), where one can observe individual Bitcoin
addresses, which are grouped into a cluster, and pertain to an entity. The first entity
(Coinbase) is labelled with the category label of Exchange. An Exchange allows
their customers to trade bitcoins for fiat currencies, whereas the other entity is
labelled Uncategorized, meaning the cluster has not yet been identified (i.e., it has
not yet been linked to a real-world identity).

Clustering Concepts

The transactional data supplied by the data provider is publicly available to every-
one and can be retrieved from the Bitcoin Blockchain without any cost. However,
the data used in this research has been enriched through various data processing
techniques, providing us with addresses that have already been clustered, identified,
and categorized. As previously defined, a cluster is a collection of Bitcoin
addresses that are estimated to be controlled by a single entity. Clusters are
identified by the data provider through different means as follows:

● Co-spend clustering: A co-spend cluster is estimated due to several addresses
all contributing inputs to a single transaction. Suppose that a user sends

Figure 1. Anatomy of a bitcoin cluster.
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a Bitcoin to a merchant, with 0.4 Bitcoin from one address and 0.6 Bitcoin
from another. Prior to this transaction, the two sending addresses would
appear to be two separate entities. However, after the transaction takes
place, we can conclude that there is only one entity behind the transaction
as both private keys would need to be present to sign the transaction as valid.
Not only are the addresses thus linked in that transaction, but all previous and
future transactions involving those addresses are now linked.

● Intelligence-based clustering: In this type of clustering, information is gath-
ered from outside the transaction history to better enable the clustering of
data. Data sources for information gathering include but are not limited to:
data leaks, court documents, data partnerships, exchanges that share their
addresses, and manual merges due to service changing wallets.

● Behavioral clustering: As part of this clustering, patterns in the timing or
structure of transactions will be utilized to identify a specific wallet.
Basically, a wallet is nothing but a Bitcoin equivalent of a bank account,
where users store and transact their bitcoins. There can be a software wallet
(like an application installed by the users on their devices) or a web/hosted
wallet, which is normally hosted and maintained securely by a third-party
provider. Behavioral clustering can be used to cluster and relate the Bitcoin
addresses to known hosted services or even to specific wallet software.

The data provider sends at least one transaction to every cluster before categoriz-
ing it and tracks the moving funds to ensure that the clustering is error-free. Finally,
considering that the data is used in law enforcement and financial compliance, the
clustering algorithms and heuristics are designed and reinforced to minimize false
positives, as errors could cause serious repercussions to innocent users. As dis-
cussed in the subsection Anonymity, cryptocurrencies allow their users to use
pseudonyms to perform transactions. Since the cryptocurrency users self-select
their pseudonyms (i.e., keys) and, in general, they create a new pseudonym for
each transaction (as strongly advocated by the cryptocurrencies), it is difficult to
identify the real identities behind the pseudonyms. However, the previously dis-
cussed clustering concepts can be applied to group the transactions and thereby the
underlying pseudonyms as well, to profile these entities (who are the holders of the
pseudonyms) based on their transactional behavior. In this context, our first propo-
sition is:

Proposition 1: De-anonymizing pseudonyms and their connected transactions
in Bitcoin blockchain is possible using clustering techniques.

Supervised Machine Learning

For the analysis of Bitcoin transaction data, we used Supervised Machine Learning
algorithms to detect patterns in the labelled dataset at hand. In this section, we will
briefly describe the main idea behind the machine learning algorithm and give
a concise introduction to various algorithms used in our method. More specifically,
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the underlying function that explains the relationship between explanatory vari-
ables, often referred to as predictors, and responsive variables, often referred to as
outcomes or targets in statistical literature, are computed to fit a prediction model
[38]. Let n be the amount of training examples

ðx1; :: :; xn; yÞ

where x denotes the feature vector, xi the individual feature component, and y the
responsive variable. The Supervised Machine Learning algorithm seeks a function
where x is the input and y is the output. The learning problem at hand suggests
a prediction model that can classify an entity type of 12 possible classes, which is
referred to as a multi-class classification problem. This function can be denoted as:

y ¼ f ðxÞ þ e

where e is the random error considered in the function. For a multi-class classifica-
tion problem, the quantitative output for y is computed. From this, the algorithm
can assign a label to the data point based on the class to which it most likely
belongs [38]. The best machine learning algorithm depends on the given learning
problem, as proposed by the No Free Lunch Theorem, suggested by Wolpert and
Macready, who state that “any two optimization algorithms are equivalent when
their performance is averaged across all possible problems” [111, p. 721]. Seven
different Supervised Machine Learning algorithms have been tested in this paper.
Additionally, the data used for training the prediction model is sparse; whereas, the
computational burden associated with training the prediction model is assumed to
be low. Therefore, several Machine Learning Algorithms used for hyperparameter
tuning and modelling has been tested without meeting the computational budget.
Furthermore, this approach presents interesting findings regarding the best machine
learning algorithm for classifying a labelled blockchain dataset. Based on the latter,
seven different learning algorithms have been applied: Decision Trees, Bagging,
Random Forests, Extra Trees, AdaBoost, Gradient Boosting, and k-Nearest
Neighbors.

Decision Tree

One of the basic algorithms utilized is the Decision Tree, which has its name derived
from a hierarchical model visually formed like a tree. The algorithm splits the
observations into multiple branches, also referred to as subsets, based on a decision
node with a given criteria. These criteria are determined from the explanatory vari-
ables, as the algorithm seeks to apply the most significant feature to perform the better
split between the observations [13]. The best split can be measured by the information
gain that is mathematically derived from a decrease in entropy (as explained in the
following section). The Entropy describes the homogeneity of a sample distribution
[91]. With classes equally divided in a binary subset, the entropy will be 1; however,

REGULATING CRYPTOCURRENCIES 53



as the distribution becomes more homogeneous, the entropy will approach zero. Let
G be the information gain and E the entropy:

Gðy; xÞ ¼ EðyÞ � Eðy; xÞ

where E(y) denotes the entropy in the parent node (i.e., the class distribution before
the split) and E(y, x) the entropy for the proportionally joined child nodes (i.e., after
the sample has been split by the decision node, based on a given feature, denoted as
x). The individual Entropy is derived from the following formula:

E ¼
X

� pj log2 pj

where p is the probability of the jth class in the subset. The total Entropy for the
split (i.e., the proportionally joined Entropy) is computed to estimate the informa-
tion gain. With a feature set larger than one, the entropy for the child subset can be
calculated for multiple features to search for the split with the largest information
gain. Another way to measure impurity is to compute the Gini Index as evidenced
by the following function. Let G be the Gini Index:

G ¼ 1�
X

J

pj
2

Similar to the function for calculating Entropy, the probability distribution among
the j number of classes is denoted by p and is derived from the class distribution
in the subset. The number of classes corresponds to the 12 classes at hand in the
learning problem of this paper. Based on this approach, the algorithm will seek
the decision node that lowers the Gini Index. This is undertaken by calculating
the weighted branch impurity for the different branches that emerges from a split
[91]. This result is compared to other potential splits similar to the aforemen-
tioned information gain approach. In other words, the algorithm selects the feature
split that leads to the best separation of classes, derived from the lowest Gini
Index. Applicable to both the Entropy and Gini Index, the procedures are under-
taken recursively until a certain limit is reached, depending on the selection of
hyperparameters. There are different versions of the Decision Tree algorithm,
such as ID3, C4.5, C.50, and CART. The scikit-learn library utilizes an optimized
version of the CART algorithm that supports both criterions.1

Bagging

Bagging, also referred to as Bootstrap Aggregation, is a technique for reducing the
variance of an estimated prediction model [38]. A number of weak learners, such as
a Decision Tree, is randomly trained on a subset of the training data. The base
estimator (e.g., Decision Tree), number of learners, and maximum amount of
samples, et cetera, are defined as hyperparameters in the algorithm.
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Random Forests

As an extension of decision trees, the Random Forest algorithm is approaching the
classification task by constructing a multitude of Decision Trees to base its predic-
tion upon. It utilizes a modification of the Bagging algorithm, as it de-correlates the
trees through the Random Subspace Method. This method constructs multiple trees
systematically by pseudo-randomly selecting subsets of the feature vector [53]. It
will utilize the reduced variance achieved from the Bagging algorithm and select
subsets of features to achieve better generalization.

Extremely Randomized Trees

Extremely randomized trees are another tree-based ensemble method for classifica-
tion problems. Geurts et al. [45] state that the cut-point, determined in the node of
a decision tree, is associated with high variance in tree-based models, such as CART
and C4.5. It is therefore responsible for a significant part of the error rates of tree-
based methods [45]. Rather than relying on discriminative thresholds in the decision
node, the split is randomly selected in this algorithm to mitigate these problems.

Adaptive and Gradient Boosting

Boosting algorithms are another type of ensemble learners that fit sequences of weak
learners, such as Decision Trees [88]. In other words, it tries to boost the weak
learners similar to the Bagging algorithm, as it recursively selects a subset of the
training data, which differs among the weak learners. However, AdaBoost (Adaptive
Boosting) assigns weights to the samples, based on the ability of the weak learners, in
order to predict the individual training sample. Thus, for each iteration, the sample
weights are individually computed and the successive learner is applied to the new
data subset [88]. Misclassified data points will score a higher weight and, therefore,
have a higher chance of being selected for subsequent weak learners, which forces
the learners to focus on data instances that are harder to predict. Similarly, the
Gradient Boosting algorithm performs a gradient descent procedure that minimizes
the loss function by recursively improving weak learners [39]. Thus, the residual loss
is reduced by modifying the hyperparameters of the weak learner to minimize the
misclassification rate. General to boosting algorithms, a weighted majority vote
among the weak learners is utilized to produce a final prediction from the model.2

Nearest Neighbours

Regarding the choice of algorithms, we have excluded linear models and Support
Vector Machine, as our dataset includes a variety of collinear variables, which may
increase the variance of the coefficient estimates and, thereby, sensitizing the model
to minor changes [61].
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Supervised Machine Learning approaches are quite good in identifying the
patterns and also making predictions about yet unlabeled categories in the unlabeled
dataset. Classifiers using Supervised Machine Learning first predict the probability
of each of the categories of a qualitative variable to decide on the most probable
label for the unlabeled category [58]. In this research work, we used Supervised
Machine Learning algorithms to predict the category for a yet-unidentified entity.
Using this approach, we also want to estimate the extent of the cyber-criminal and
illicit activities in the Bitcoin blockchain ecosystem. In this context, we propose the
exploration of the following propositions:

Proposition 2: Supervised Machine Learning approaches can be utilized to
build classifiers that can predict a category of a yet-unidentified clusters on the
Bitcoin blockchain.

Proposition 3: Extent of the cybercriminal and illicit activities in the Bitcoin
blockchain ecosystem can be estimated with good accuracy.

Methodology

In this section, we will first describe the dataset and its primary attributes, and then
we will discuss various cluster categories in the context of Bitcoin cryptocurrency.
Then, we will discuss the data analysis process, primarily in terms of the accuracies
of various algorithms to predict the category of yet-unidentified clusters. We will
also discuss the need for using over-sampling to deal with class imbalance problems
of under-represented categories and finally conclude with the dataset’s limitations.

Dataset Description

As mentioned before, the dataset used in this research was provided by the
company Chainalysis [28], which specializes in blockchain data analysis. The
dataset primarily contains transactional data, including details about every single
transaction an entity has participated in, such as the time stamp, the value sent or
received in Bitcoin and USD, or the counter-party of the transaction. In addition to
this, the dataset also contains the characteristics of each cluster and, in some cases,
the categories have already been identified.
As shown in Table 1, the dataset used in this research contains approximately

395 million transactions pertaining to 957 unique clusters and Table 2 provides
distribution of clusters among the predefined categories. The 957 observations are
used as training and test sets for the current study, and they have been labeled by the
data provider via proprietary domain specific heuristics. This dataset includes five to
six categories that are commonly associated with illicit activities, which are darknet-
market, mixing, ransomware, scam, stolen-bitcoins (a total of 104 observations), and
gambling looking from some jurisdictions’ perspective (206 observations in this case).
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The set of uncategorized clusters is independent of the previous 957 observations.
The uncategorized set are addresses that were grouped by the data provider using the
co-spend heuristic algorithm but without any label nor identification, meaning that
there is not enough evidence of what the activity of those addresses is. This dataset
includes transactional data on 153,293 clusters. In both cases, the transactions included
are the ones included up to block height (i.e., number of blocks in the chain) of 512,033,
which corresponds to the last block mined on 2018-03-04 23:58:21 (UTC). The
number of transactions per cluster varies significantly, ranging from a low number
(≥10) to several million transactions. Additionally, Appendix 2, Table 3 provides
descriptive statistics of the transactions for every category. More specifically, the
average median, minimum, and maximum number of transactions are shown, based
on the number of observations within the respective category.
For each transaction, there are several attributes describing the transaction as

shown in Appendix 2, Table 4. To describe the behavior of a cluster in a way that
can be passed on to a Supervised Machine Learning algorithm, we extracted a set of
features from the original input variables (see Appendix 2, Table 5) for each
identified cluster. Apart from the extracted features, we engineered additional
features such as the count of transactions, their mean and standard deviation, the
cluster lifetime, a cluster’s exposure to specific other clusters, and so forth. The
resulting feature space consists of a total of 98 features. Appendix 2, Table 5 shows
only a few important extracted features and the full list of 98 features has been
omitted from the paper in view of space limitations.

Cluster Categories

The Bitcoin addresses that were clustered together using the clustering techniques
mentioned in sec. Clustering Concepts are further labeled with different category
labels assigned by the data provider. These category labels can range from non-

Table 3. Comparison of Accuracies of Original and Oversampled Datasets

Supervised Algorithms
Original Dataset

Accuracy

Oversampled
Minority
Accuracy

Oversampled
Auto

Accuracy

K-Nearest Neighbors (KNN) 0.4292 0.5333 0.5806
Classification and Regression

Trees (CART)
0.6917 0.7746 0.9096

AdaBoost Classifier (ABC) 0.6125 0.2698 0.1721
Gradient Boosting Classifier

(GBC)
0.8042 0.8127 0.9575

Random Forest Classifier (RFC) 0.7833 0.7937 0.9564
Extra Trees Classifier (ETC) 0.7500 0.7968 0.9641
Bagging Classifier (BGC) 0.7833 0.8159 0.9575
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suspicious activities, such as exchanges, to high-risk categories, such as ransom-
ware, and so on. The aforementioned list shows the categories used in this work for
predicting a yet-unidentified entity.

Table 4. Classification Report from GBC with Original Dataset

Cluster Categories Precision Recall F1-score Support

darknet-market 0.6923 0.6923 0.6923 13
exchange 0.7391 0.9189 0.8193 74
gambling 0.8148 0.7586 0.7857 29
hosted-wallet 0.0000 0.0000 0.0000 2
merchant-services 0.0000 0.0000 0.0000 4
mining-pool 1.0000 0.7647 0.8667 17
mixing 1.0000 0.2500 0.4000 4
other 0.4286 0.4286 0.4286 14
personal-wallet 0.9459 0.9459 0.9459 74
ransomware 1.0000 0.5000 0.6667 6
scam 1.0000 0.6667 0.8000 3
stolen-bitcoins 0.0000 0.0000 0.0000 0
avg/total 0.8055 0.8083 0.7964 240

Table 5. Prediction Results

Address RFC ETC BGC GBC

add1 personal-wallet personal-wallet personal-wallet exchange
add2 ransomware personal-wallet gambling ransomware
add3 ransomware personal-wallet ransomware exchange
add4 personal-wallet personal-wallet exchange ransomware
add5 exchange personal-wallet gambling ransomware
add6 ransomware ransomware ransomware ransomware
add7 exchange personal-wallet ransomware personal-wallet
add8 gambling gambling other gambling
add9 exchange other exchange exchange
add10 gambling personal-wallet gambling ransomware
add11 exchange other exchange exchange
add12 personal-wallet personal-wallet personal-wallet personal-wallet
add13 ransomware ransomware ransomware darknet-market
add14 personal-wallet exchange ransomware ransomware
add15 ransomware personal-wallet ransomware ransomware
add16 ransomware personal-wallet ransomware ransomware
add17 exchange personal-wallet gambling ransomware
add18 exchange personal-wallet exchange exchange
add19 exchange personal-wallet gambling ransomware
add20 exchange personal-wallet gambling ransomware
add21 ransomware personal-wallet gambling ransomware
add22 exchange personal-wallet gambling ransomware

58 YIN ET AL.



● Exchange: Entities that allow their customers to trade fiat currencies for
bitcoins.

● Hosted-Wallet: Trusted entities that offer bitcoin storage as a service.
● Merchant Services: Entities that offer solutions to businesses in order to

facilitate the adoption of bitcoins as a payment method for their customers.
● Mining Pool: Entities composed by distributed miners who share their

processing power over a mining network and gain a compensation that equals
to their contribution in solving a block.

● Mixing: Entities that apply techniques to reduce the traceability of their
clients’ transactions as a service.

● Gambling: Entities that offer gambling services.
● Scam: Entities that deceive their customers by pretending to provide a service

in order to steal their bitcoins.
● Darknet Market: Marketplaces primarily facilitating trading of illegal goods

such as narcotics, stolen credit cards, passports, and so forth. These sites are
only accessible on the deep web through, for example, the TOR-browser.

● Ransomware: Entities that are utilizing the Bitcoin Blockchain as a medium
of exchange to receive ransom fees.

● Stolen Bitcoins: Entities that managed to gain access to the private key(s)
owned by other entities and committed thievery.

● Personal Wallets: Addresses or group of addresses managed by one entity for
private uses such as trading, buying goods, gambling, and so forth.

● Other: Entities that have been identified but do not belong to any of the nine
categories previously mentioned, for example, WikiLeaks’ donation address.

Given the aforementioned clustering techniques, the consequently revealed clus-
ter identities, and their corresponding categories, we can illustrate a network of
identified clusters as shown in Figure 2.

Data Analysis Process

As shown in Figure 3, the first phase in the data analysis process is the data
preparation, which contains data pre-processing and features extraction as the
main processing steps to transform the dataset into the required format. The
required format is a matrix where the number of columns is equal to the number
of features (X), the last column being the label (y), and the number of rows is the
total number of observations across all labels. The resulting ready-to-feed-in dataset
contains (957, 99) rows.
After the data preparation step, the analysis process is composed of three

iterations using three different datasets: the original dataset, dataset with min-
ority classes oversampled, and the final one, where all the classes have been
oversampled to reach the same number of observations of the most populated
class. The distribution of the three datasets is shown in Appendix-2; Figure 1.
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As our dataset contains three minority and under-represented classes, hosted-
wallet, mixing, and stolen-bitcoins, to compensate for the class imbalance, we
used SMOTE (Synthetic Minority Over-Sampling Technique [30]). In each of
the iterations, the data is split into training and validation subsets of 75% and
25%, respectively, and used as input for the seven aforementioned supervised
learning algorithms with the default parameters as defined by scikit-learn [88].
The performance is measured by the mean cross-validation accuracy, which can
be seen in Appendix 2, Figure 2, Figure 3, and Figure 4.

Figure 2. Visualization network of different categories

Figure 3. Data preparation and analysis process
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By comparing the performance across the seven algorithms, the top four were
selected: Gradient Boosting, Random Forests, Extra Trees, and Bagging Classifier.
For the next step, we tuned the hyperparameters for each model using cross-validated
random search. Parameter tuning was undertaken using three-fold cross validation
due to the scarcity of known clusters (n = 957). Therefore, using a traditional train-
test-validation split would bear the risk of making the performance too dependent on
a specific subset of training data, waste data, and inhibit predictive ability [38].
A random search was utilized with 1,000 iterations, as it is empirically and theore-
tically more effective than grid search, as it allows the testing of a broader value
spectrum for each parameter, and as it is less likely to waste effort on irrelevant
hyperparameters, given the same amount of iterations [19]. We assessed the perfor-
mance (shown in Appendix 2, Figure 5) of each algorithm after training each model
with their respective set of optimal parameters.
After comparing the results from the three iterations, the models’ oversampled

datasets have been discarded. By looking at the cross-validation performance of the
models in Appendix 2, Figure 1, Figure 4, where the mean cross-validation scores are
≥90%, indicating that the model is likely to be overfitting the training data and may
not be performing well for unseen data. One could argue that the overfitting is caused
by a disproportionate increase of synthetic samples as opposed to the original dataset
(Appendix 2, Table 7). In the case of SMOTE (minorities), the class of stolen-bitcoin
went from having 4 observations to 306, meaning that almost 24% of observations
are synthetic; and, in the case of SMOTE (auto), almost 74% of observations are
synthetic as shown in Appendix 2, Table 7.
After discarding the models that are trained with the oversampled datasets, the

possible winning models are one of the top four trained with the original dataset with
or without tuned hyperparameters. As shown in Appendix 2, Table 6, the algorithm
with the best mean cross-validation accuracy score is Gradient Boosting (GBC) with
the default parameters described in Figure 4. For comparison of the Classification
Reports 4 and Appendix 2, Table 8, as well as the plotted receiving-operating-
characteristic curves (ROC curves) on Figure 5 and Appendix 2, Figure 8, the
Gradient Boosting algorithm with default parameters as implemented by Scikit-
Learn was used with its tuned hyperparameters version using a random search.
As the classes of interest (darknet-market, scam, ransomware, stolen-bitcoins) are

related to illicit activities, it is both important to maximize both precision and recall,
since it is as important to minimize false positives as to maximize true positives.

Figure 4. Gradient boosting classifier’s hyperparameters.
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Therefore, the final model selection will be determined by the F1-score. F1-scores are
provided on the Classification Reports 4 and Appendix 2, Table 8, which indicate that
the model with default hyperparameters has a 79.64% F1-score, which is 0.36% higher
than the model with tuned hyperparameters 79.28%. Therefore, we conclude that
tuning with hyperparameters did not help the enhancement of the F1-scores of the
model and, hence, with choose GBC with an original dataset as our final model.

Class Imbalance

There are twomain reasonswhy certain classes are under-sampled. First, some categories
(e.g., mixing) wish to remain unidentifiable due to the nature of their activities and thus
apply privacy-enhancing schemes. For example, they obfuscate transactions through so-
called peeling chains: a mixing service takes a customers’ deposits and moves it to one
single address. Then, it starts sending very small amounts from this address to different
services and the remaining coins (the change) to a new change address; this process is
repeated until the very last coin has been spent.

Figure 5. ROC curves with GBC and original dataset

Table 6. Summary Statistics of the Uncategorised Dataset

Avg.
transactions

Median
transaction

Min.
transaction

Max.
transaction Avg.addresses

Min.
address

Max.
address

uncategorized 3556.310712 1 1 15746608 929.0953729 1 2250892
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This creates dozens or even hundreds of change addresses, obfuscating the actual
origin of a transaction, making it hard to identify and cluster addresses. Second, the
data provider prioritizes some categories over others, depending on their customers’
needs and cybercrime trends, which is why classes such as hosted-wallet have
fewer observations. Clustering and identifying entities are an ongoing process;
hence, the data provider increases the number of categorized entities as time passes.

Dataset Limitations

Currently, the data used to train the prediction model does not include all of the data
that is available on the Bitcoin Blockchain. This applies to the transaction fee that
is associated with the transaction priority, the amount of signatures used to sign
a transaction, the related IP address or the transaction size, and the number of
confirmations, among others. Therefore, additional features could be extracted in
order to increase the performance of our predictions. Additionally, the amount of
clusters used to train the prediction model is limited to those that have already been
categorized by the data provider. While we did have more than 900 categorized
clusters, a larger sample size could potentially allow the discovery of more cate-
gories, as well as an increase in the number of examples for each of the already-
defined 10 categories, thereby improving the performance of the model. Finally,
with a larger sample, the methodology could be improved by utilizing a test sample,
not seen by the classifier, to accurately justify the final model results.

Results

In the previous section, we extensively described our methodology to identify the
most suitable Supervised Machine Learning algorithm that is well suited to our
Bitcoin transactions dataset. Based on the comparison of performance measures of
various algorithms and various strategies for class imbalance and hyperparameter
tuning, we have chosen Gradient Boosting wih default parameters for further analy-
sis. The results presented in this section use the chosen Gradient Boosting algorithm.

Table 7. Results from Prediction by Classes

Class Count % Class Count %

exchange 65102 42.4690 ransomware 222 0.1448
mining-pool 35767 23.3324 mixing 162 0.1057
personal-wallet 34887 22.7584 hosted-wallet 89 0.0581
other 8702 5.6767 gambling 47 0.0307
scam 7867 5.1320 stolen-bitcoins 7 0.0046
darknet-market 435 0.2838 merchant-services 6 0.0039
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Testing the Model with a List of Suspects

As previously mentioned, the winning model is Gradient Boosting with default para-
meters, which has a F1-score of 79.64%. This model has been used to make a prediction
on a list of 22 uncategorized clusters that are suspected to be associated with illicit
activities. The prototype implementation in Python using scikit-learn can be found in
Appendix A.4. In short, it is a Jupyter Notebook that loads a list of addresses that the user
wishes to analyze. Then, a ready-to-use labeled dataset is fed to Gradient Boosting with
default parameters, which focuses on 75% of the labeled set, and performs a prediction
on the list of suspects. From the 22 uncategorized clusters, 14 have been labeled as either
ransomware or darknet-market, which are related to illicit and cybercriminal activities.
The prediction results of the 22 categories using the top four algorithms is shown in Table
5. As mentioned in research performed prior to this paper, Bitcoin has been widely
associated with illicit activities, from payments in the darknet markets to the main
payment system of choice for ransom payments [52, 114]. By using this prototype
implementation, an analyst or investigator from a regulatory authority could potentially
reduce a list of potential suspects and flag addresses for further investigation with an
average accuracy of approximately 80% (due to an F1-score of 79.64%).

Estimation of the Bitcoin Ecosystem

Finally, Gradient Boosting has been applied to predict the label of 153,293 uncategorized
clusters (a summary of the data is shown in Table 6). These uncategorized clusters were
grouped Bitcoin addresses according to co-spend heuristics, but not yet identified by the
data provider. After performing the prediction of their labels, by visualizing the predicted
results, as shown in Appendix 3, Figure 9, one could make an estimation of what the
Bitcoin ecosystem looks like, as well as filtering through a large set of uncategorized
clusters to find out which clusters are most likely to be related to cybercriminal entities.
However, we do not claim that these predictions are accurate, but these results could
provide a list of suspects who might be involved in cybercriminal and illicit activities
(with approximately 80% certainty) and can be utilized for further investigation by
regulatory authorities as shown in the prototype (results shown in Table 5).

Discussion

One of the most fundamental design decisions of Bitcoin founder Satoshi
Nakamoto was to utilize so-called pseudonymity, which presents an inherent tension
between the two extremes of anonymity and accountability. Applications running
on such pseudonymous transaction graphs, such as Bitcoin or most Ethereum-based
applications, are becoming increasingly prevalent in business and society.3 It is the
characteristic of pseudonymity provided by the respective blockchain-based appli-
cations that enable their revolutionary attributes, such as decentralization and trust-
less,4 while simultaneously remaining (publicly) auditable.
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This inherent pseudonymity is beneficial as it allows for publicly auditable ledgers
that still preserve the individuals’ privacy. This enables full accountability in the
system while not revealing a user’s identity per se. This characteristic is especially
powerful for systems where public auditability is beneficial to the public, for exam-
ple, recording the votes of an election, where each vote is publicly visible. This way,
the public can audit an election where individual voters’ identities are not revealed.
While the pseudonymous architecture of Bitcoin is fertile ground for many poten-
tially revolutionary applications,5 it also opens up the opportunity for illicit activities.
Pseudonymous blockchain technology such as Bitcoin has long troubled govern-

ments, as it is notoriously used for criminal activity, such as terror financing, thefts,
money laundering, scams, and ransomware [54, 74, 75]. Not just individuals and
organizations, but nation states can be harmed by the aforementioned criminal
activities, as they facilitate organized crime, undermine governance, and decrease
tax revenues. Hence, governments seek to eliminate such illicit money flows. This
is the primary justification provided by several countries that have decided to ban
Bitcoin rather than regulate it.6

Yet, criminal activity on Bitcoin is not solely a problem for state governance, but
also leads consumers to doubt the technology’s trustworthiness, effectively hamper-
ing technology adoption. As an example, the October 2013 take-down of the Silk
Road illustrates how law enforcement action helps the adoption of Bitcoin.
Immediately after the Silk Road was shut down, the dollar value of Bitcoin
transactions spiked nearly 80% [29]. Therefore, we make the argument that a less
anonymous Bitcoin Blockchain is actually favorable for its adoption, as it increases
consumers’ and governments’ trust in the technology.
Our paper addresses this issue of accountability by developing and validating a novel

method to categorize yet-unidentified clusters on theBitcoinBlockchain usingSupervised
Machine Learning algorithms. Our analysis utilized a sample of 957 entities (with
385 million transactions), whose identity and type had been revealed, as the training set
data and built classifiers differentiating among 12 categories and showed that we can
indeed predict the type of a yet-unidentified entity. Using theGradient Boosting algorithm
with default parameters,we achieved ameancross-validation accuracyof 80.42%andF1-
scoreof79.64%.Thismodel isused topredict twouncategorized sets: a list of22addresses
that are suspected to be related to cybercriminal activities and a list of 153,293 addresses to
provide an estimation of the Bitcoin ecosystem. Admittedly, the research is limited by the
sample size of observations. As shown previously, our model struggles when predicting
classes with considerably low sample sizes such as hosted-wallet and merchant services.
Furthermore, predictive accuracy could be improved by enhanced feature engi-

neering, for example by using automated time-series feature extraction.
Additionally, one could consider alternative approaches to our analysis, such as
transforming the problem into a binary classification problem and only predicting
one specific class (e.g., non-scam/scam), reducing randomness, and broadening the
set of possible algorithms. While the chosen algorithms are deemed computation-
ally expensive, speed is not an issue, as we do not target real-time prediction.
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Implications for Organizations

The results show that it is indeed possible to categorize yet-unidentified clusters.
This means, that one can reveal the category of a significant portion of entities on
the Bitcoin Blockchain, challenging popular beliefs about Bitcoin’s true level of
anonymity. With regard to practical applications, our approach could potentially
contribute to regulatory compliance and crime investigation irrespective of the two
contrasting approaches of stringent versus open-ended regulation regarding work on
legal aspects of regulating cryptocurrencies. First, one could flag suspicious enti-
ties, such as ransomware or scams, to prevent interaction with high-risk clusters.
Also, in accordance to local financial regulations, a company that transacts on the
Bitcoin Blockchain might be obliged to prove that the received money had not
knowingly been involved in illicit activities.
For such compliance tasks, our research paves the way toward identifying and

detecting high-risk transactions, enabling organizations to safeguard their reputation
and to comply with local regulations.

Societal Implications

Our findings spark a discussion on the societal implications of reducing Bitcoin’s
anonymity. Privacy is a fundamental human right, integral to the functioning of
democracy, as it limits power of the government and private sector over the public.
At face value, our work seems to attack the privacy of Bitcoin. However, making
known such non-trivial weak spots of Bitcoin’s anonymity, as found in this work,
can have positive societal implications. Our research makes users aware of the
technology’s privacy weaknesses, enabling them to prevent unintended identity
disclosure and/or surveillance, motivate stakeholders to improve Bitcoin’s under-
lying technology to increase privacy and foster the research on cryptocurrency
anonymity. Moreover, a more transparent Bitcoin Blockchain could heighten the
wider societal trust in the cryptocurrency. Furthermore, heightened accountability
can help law enforcement track down criminals and make it less attractive for
criminals to turn to cryptocurrencies. When an actor’s counter parties can be
revealed using the described technique, law enforcement can pinpoint high-risk
actors for further investigation and reduce the scope of possible suspects dramati-
cally, which in turn would reduce criminal activity. Anonymity becomes weaker,
the more is known about the linking to a subject [89].
As the European Union points out in their proposed cryptocurrency regulation8:

The credibility of virtual currencies will not rise if they are used for criminal
purposes. In this context, anonymity will become more a hindrance than an
asset for virtual currencies taking up and their potential benefits to spread.

As such, we believe that our work could inform policy makers rather than outright
banning of cryptocurrencies; they could explore the spectrum ranging from
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stringent to open-ended regulation. This would allow preservation of the desired
features of blockchain-based technologies while addressing the undesired aspects of
cybercriminal activities.

Conclusion

In this paper, a multi-class classification on Bitcoin Blockchain clusters was con-
ducted. The aim was to investigate whether one can predict the category of a yet-
unidentified cluster, given a set of already identified clusters serving as training
data. Using the Gradient Boosting algorithm with default parameters, we achieved
an average cross-validation accuracy of 80.42% and a F1-score of 79.64% across
all labels on 240 observations in the test set. This F1-score represents an average
precision of 80.55% (the amount of true positives from the total predicted positives)
and a recall of 80.83% (the amount of true positives among all actual positives).
This model is used to make predictions on two uncategorized sets as demonstra-
tions of its potential applications: a list of 22 addresses that are suspected to be
related to cybercriminal activities, specifically related to addresses used to receive
ransom payments, and a list of 153,293 addresses to provide an estimation of the
Bitcoin ecosystem and the presence of different types of existing entities.
Regardless of the accuracy derived from data analytics, our research outcome
shows that the assumed level of anonymity of the Bitcoin Blockchain is not as
high as commonly believed, and the number of potential owners of a Bitcoin
address can be narrowed down to a certain degree. Our paper makes three con-
tributions: (a) it develops and validates a novel-method for de-anonymizing the
Bitcoin blockchain transactions; (b) it provides the first estimation of different
entity types in the Bitcoin Blockchain ecosystem; and (c) it provides implications
for practitioner and regulators in addition to a prototype implementation of our
method, which can be used as a tool to assess.
This work paves the way for further research, where increased amount of data and

alternative classification approaches may lead to improved results. In the future, we
would seek to increase the relatively low sample size of identified clusters and add
further cluster categories to create a more fine-tuned differentiation between the
clusters. Also, additional data could be utilized by harnessing more of the inher-
ently available data on the Bitcoin Blockchain. Feature engineering processing
could be improved, for example, by using automated feature extraction.

NOTES

1. https://en.wikipedia.org/wiki/Silk_Road_(marketplace) [1].
2. Tree algorithms: ID3, C4.5, C5.0 and CART.
3. Ensemble methods.
4. For example, German car manufacturer Daimler AG recently issued a e100 Million

Corporate Bond on the blockchain [66]. Also, Bitcoin has reached a trading volume
corresponding to more than USD one bn/day [57].

5. The ability to avoid the need for a trusted third party [23].
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6. See [112] on the many different ways pseudonymous Blockchain technologies could
revolutionize business and society.

7. See https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country_or_territory
8. Council and Parliament of the European Union: Amendment to directive (EU) 2015/849.
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Appendix 
 

A.1. Related Work 
Table appendix-1-tab-1. Related Work on Cyber Threat Intelligence and Blockchain in Information Systems 

 
Part I: Research on Fraud Detection and Cyber Crime 

Authors Focus Theory / Method Main Findings 

Pinsonneault, A. 

and Heppel, N. 

(1997) [90] 

Anonymity in 

group support 

systems (GSS) 

Conceptualisation 

of anonymity in 

GSS 

Identified that real anonymity can not be obtained from simple lacking of identifi- 

cation. Argued that anonymity in group support systems can lead to dysfunctional 

behaviors. 

Ba, S., et.al. 

(2005). [11] 

Trusted Third 

Party (TTP) in e- 

commerce markets 

Evolutionary game 

theory 

Identified that the transactions facilitated by TTPs resulted in higher payoffs and that 

TTPs are crucial for the evolution of e-commerce markets. 

Otjacques,B., 

et.al. (2007) [87] 

Identity related 

information in EU 

countries 

Longitudinal itera- 

tive expert survey 

Discusses how public organisations in the EU manage identity-related data and shar- 

ing of such data across various public and private organizations espcially across EU 

member countries 

Abbasi,  A.,  et. al. 

(2008) [2] 

Identifying fraudu- 

lent traders 

Stylometric analy- 

sis 

Stylometric techniques can be applied to prevent identity changes and reputation 

manipulation in electronic markets and these methods are instrumental in identify- 

ing fraudulent identities against potential trading partners. 

Abbasi,   A.,  et.al. 

(2010) [4] 

Detection of fake 

websites 

Statistical learning 

theory (SLT), Clas- 

sification methods 

Design guidelines for development of SLT-based classification systems for detecting 

fake websites using rule-based and machine learning based approaches. 

Abbasi,   A.,  et.al. 

(2012) [1] 

Detection of finan- 

cial fraud 

Design science ap- 

proach with ma- 

chine learning 

Meta-learning framework for financial fraud detection and the use of organization- 

al/industrial contextual information is more effective in expanding the fraud detec- 

tion feature space. 
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Table appendix-1-tab-1. Related Work on Cyber Threat Intelligence and Blockchain in Information Systems 

 
Authors Context Theory / Method Findings 

Twyman, N. W., 

et.al. (2014) [109] 

Identifying fraudu- 

lent and criminal 

behaviour 

Defensive re- 

sponse, orienting 

theories, Design 

science 

Autonomous screening systems to detect individuals’ purposely concealed informa- 

tion and fraudulent behavior in connection with privacy violations, knowledge of 

concealed weapons. 

Li, X., et.al. 

(2015) [70] 

Market surveil- 

lance systems 

Design science the- 

ory 

Used kernel theory of efficient market hypothesis to access market context and trans- 

action risk and thereby to identify illegal trading activities. 

Abbasi,  A.,  et. al. 

(2015) [3] 

Identifying phish- 

ing websites 

Design science ap- 

proach 

To detect phishing websites using genre tree kernel method with fraud cues that are 

utilised with purpose differences between legitimate and phishing websites. 

Li, W., et.al. 

(2016) [69] 

Identifying

 cyber

criminals 

Text mining & sen- 

timent analysis 

Developed a system to identify and profile top sellers in the underground economy 

using sentiment of customer reviews and topic modelling of advertisements. 

Benjamin, V., 

et.al. (2016) [18] 

Identifying

 cyber

criminals 

Rule-based and 

machine-learning 

methods 

Developed SVM classifier to identify cyber-criminals by analysing participant mes- 

sages from Internet relay chat communities. 

Samtani, S., et.al. 

(2017) [98] 

Identifying Hacker 

Assets and key 

Hackers 

Text mining Automated text and web mining on malicious hacker tools to determine the key 

hackers behind the hacker assets by using social network analysis methods. 

Karwatzki, S., 

et.al. (2017) [60] 

Individual’s pri- 

vacy and personal- 

ization 

Information 

boundary the- 

ory 

Empirical support for the personalization vs. privacy paradox and showed that 

transparency features don’t help enhance the willingness to share personal infor- 

mation. 
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Table appendix-1-tab-1. Related Work on Cyber Threat Intelligence and Blockchain in Information Systems) 

 
Authors Context Theory / Method Findings 

Hui,    K.,    et.  al. 

(2017) [55] 

Cybercrime 

rence 

deter- General deterrence 

theory, routine ac- 

tivity theory 

Investigated if enforcement of convention on cybercrime helps in deterring dis- 

tributed denial of service attacks and found out that attackers in cyberspace are ra- 

tional, motivated by economic incentives, and strategic in choosing targets. 

Part II: Research on Blockchain and Cryptocurrencies 

Glaser,    F.,    et.al. 

(2014) [48] 

User perspective in 

cryptocurrencies 

Empirical case 

study 

Indicated that new Bitcoin users rather use it as an asset with a speculative invest- 

ment intention rather than as a currency. 

Glaser,    F.,    et.al. 

(2015) [47] 

Decentralized Con- 

sensus Systems 

Taxonomy Provided a taxonomy for decentralised consensus systems and cryptocurrencies and 

an overview of different types of decentralised systems. 

Beck, R., et.al. 

(2016) [16] 

Trust-based 

ment 

pay- Design science, 

prototype 

Prototype of trust-based coffee shop payment system to demonstrate blockchain 

technology and to identify strengths and weaknesses of technology. 

Atzori,M. 

(2016) [10] 

Democracy, 

authority 

state Decentralized gov- 

ernance 

Dominance of private powers in blockchain-based decentralized governance may 

lead to emergence of a stateless global society and dis-empowerment of citizens. 

Risius,   M.,  et.al. 

(2017) [94] 

Blockchain 

search 

Re- Framework for 

Social Media 

Research [8] 

Research framework for blockchain based three activities (design & features, mea- 

surement & value, management & organization) at four levels of analysis (users & 

society, intermediaries, platforms, firms & industry). 

Hyvaerinen, H., 

et.al. (2017) [56] 

Blockchain 

type 

proto- Design Science Ap- 

proach 

Developed a blockchain-based prototype to demonstrate enhanced transparency re- 

garding the flow of dividends and reduce tax frauds in public taxation sector. 

Nofer,    M.,   et.al. 

(2017) [85] 

Blockchain appli- 

cation, cryptocur- 

rencies 

- - Need for information systems researchers to focus on the questions of trust and 

privacy, challenges of market design, and organisational adoption strategies of 

blockchain technologies. 

Glaser, F. 

(2017) [46] 

Blockchain 

search 

re- Blockchain ontol- 

ogy 

Domain concepts for blockchain-based systems and connecting technological impli- 

cations to digital market models. 

50 
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Table appendix-1-tab-1. Related Work on Cyber Threat Intelligence and Blockchain in Information Systems) 

 
Authors Context Theory / Method Findings 

Notheisen, B., 

et.al. (2017) [86] 

Blockchain Market Blockchain Mar- 

ket Engineering 

Framework 

Proposed a four-layered approach to blockchain research using market engineering 

framework: agent, application, infrastructure and environment. 

Cholewa, J., et.al. 

(2017) [31] 

Blockchain 

type 

proto- Design Science ap- 

proach 

Developed blockchain based proof of concept prototype for automated transaction 

of real-world assets such as cars registration. 

Naerland, K. et.al. 

(2017) [82] 

Blockchain 

type 

proto- Design Science ap- 

proach 

Design principles for applications that can mitigate transactional risk and uncer- 

tainty to decentralized inter-organizational environments 

Beck, R., 

(2018) [17] 

et.al. Blockchain 

omy 

econ- Decentralized 

autonomous orga- 

nizations 

IT governance Framework for blockchain economy along three dimensions: decision 

rights, accountability, and incentives and a case study of an emerging decentralized 

autonomous organizations 

Beck, R (2018) [15] Decentralized 

autonomous orga- 

nizations 

Orgnisational 

design 

Blockchain empowers organizations to implement contracts and transactions with- 

out the need of having a central legal entity and therefore it will lead to emergence 

of decentralized autonomous organizations. 

Mai, F., 

(2018) [72] 

et.al. Bitcoin and cryp- 

tocurrencies 

Silent Majority Hy- 

pothesis 

Explored economic impact of social media on the cryptocurrencies and found out 

that social media sentiment is an important predictor in determining bitcoin’s valu- 

ation 

 

Table appendix-1-tab-2. Existing Research on Regulating Cryptocurrencies and/or Blockchain 
 

Article Primary Theme Main Arguments 

Kleiman, 

J.A.(2013) [63] 

Regulation Cryptocurrencies can be potential security and economic threat and argues for establishing clear juris- 

dictional lines and regulations for the virtual currency industry. 

51 



Page 5 of 18 
 

 

 
Table appendix-1-tab-2. Existing Research on Regulating Cryptocurrencies and/or Blockchain (continued) 

 
Article Primary Theme Main Arguments & Recommendations 

Turpin, J. B. 

(2014) [108] 

Regulation (fa- 

vorable) 

Argues for regulation, but is in favour of embracing the new technology. Recommends that governments 

should further study and regulate Bitcoin, but without attempting to stop or slow the growth of the 

currency itself and without attacking otherwise law-abiding citizens who transact in Bitcoins. 

Ajello, N. J. 

(2014). [5] 

Regulation, 

Money Launder- 

ing 

Is concerned with Bitcoin’s money laundering and its economic and social consequences. Advocates for 

more stringent regulations and argues that cryptocurrencies deserve greater attention from regulators 

and law enforcement officials. 

McLeod, P. 

(2014) [76] 

Regulation Argues for regulation, but suggests to amend the existing legal provisions in an amicable way to create 

a workable regulatory model for cryptocurrencies. 

Sonderegger, 

D. (2015) [104] 

Regulation (fa- 

vorable) 

Suggests that given Bitcoin’s ideological and technological underpinnings, it requires a degree of regu- 

latory freedom to succeed. Argues that proper regulation will not stifle innovation but will allow it to 

self-regulate within a vaguely defined regulatory framework. 

Kiviat, T. I. 

(2015) [62] 

Digital Assets, 

Regulation (fa- 

vorable) 

Argues that true value of technology lies in its potential to facilitate more efficient digital-asset transfers 

and advocates that policymakers must carefully define the specific activities that they seek to regulate. 

Tsukerman, 

M. 

(2015) [107] 

Regulation (fa- 

vorable) 

Claims that unmasking actors on the blockchain will help Bitcoin shed its infamous reputation and that 

Bitcoins must be brought into the light and seen as a useful currency, and not simply as the refuge of 

dark web inhabitants. 

Colombo, R. J. 

(2016) [35] 

Regulation (fa- 

vorable) 

Argues that responsibility of regulators and lawmakers is to establish rules that safeguard consumers 

and markets without hindering growth and innovation. Opines that it will be difficult to get right when 

dealing with something as new and alien (to fiat currency regulatory apparatus) as virtual currency. 

Lin, T. C. 

(2016) [71] 

Cyber security, 

Compliance 

Focuses on the challenges of financial cybersecurity, technology integration, compliance, and the role of 

humans in the future of modern finance. 

52 
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Table appendix-1-tab-2. Existing Research on Regulating Cryptocurrencies and/or Blockchain (continued) 

 
Article Primary Theme Main Arguments & Recommendations 

Lee, L. 

(2016). [67] 

Cyber  Securi- 

ties and Stock 

Markets 

Argues that blockchain will create cryptosecurities that will allow public to verify transactions if they 

want, which will remove some of hidden secrecy surrounding much of the high frequency and dark 

pool trading occurring today. 

Gabison, G. 

(2016) [44] 

Regulation, Ac- 

countability 

Argues for the need of policymakers to reinvestigate a number of laws and rights for blockchain. Fears 

that lack of accountability to a policing authority, users can be exposed to attacks and allows potential 

transfers that finance criminal activities. 

Christopher, 

C. M. 

(2016) [33] 

Enforcement and 

Trust 

Argues that Bitcoin requires more trust than is generally understood and both currency and payment 

systems benefit from the involvement of trusted intermediaries in response to problems and crises. 

Rosner et. al. 

(2016) [96] 

Flexible Regula- 

tion 

Argues for a flexible and principles-based approach to amend current regulatory frameworks to ac- 

count for modern technological realities. Claims that the cryptocurrency Ripple’s advantages suggest 

that users will increasingly use these systems in place of traditional payment processes. 

Shackelford 

et.al. 

(2017) [101] 

Cyber Security, 

Regulation 

Examines blockchains through the lens of polycentric governance to ascertain what could be done to 

build trust in distributed systems and ultimately promote cyber peace. Assessment is that it will take 

many years to build sustainable blockchain system by involving by numerous stakeholders and policy- 

makers. 

Guo, A. 

(2017) [51] 

Patents for 

blockchain tech- 

nology 

Discusses whether trade secret or copyright protection should apply to protect the claims and uses of 

blockchain technology and states that only time will tell if blockchain technology can be claimed as 

intellectual property or be used in court. 

Reyes, C. L. 

(2017). [93] 

Crypto-legal 

structures 

Advocates for usage of blockchain technologies for legal systems (cryptolaw) and argues that cryptolaw 

could offer a legal discourse to serve more rapidly, more efficiently, more transparently, and in creative 

ways that may encourage increased civic engagement. 

53 
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Table appendix-1-tab-2. Existing Research on Regulating Cryptocurrencies and/or Blockchain (continued) 

 
Article Primary Theme Main Arguments & Recommendations 

Ross, E. S. 

(2017) [97] 

Regulation, Na- 

tional charter 

Claims that regulatory emphasis on the threat posed by cryptocurrencies has created hostile environ- 

ment to innovation. Advises to establish a national charter for FinTechs to absorb full potential of 

blockchain technology. 

Surujnath, R. 

(2017) [106] 

Derivatives Mar- 

kets 

Advocates that blockchains with self-executing smart-contracts provide compelling opportunities in 

derivatives markets and that they can reduce dependency on central counter-parties that are exposed to 

large amounts of credit risk. 

Sklaroff, J. M. 

(2017) [102] 

Smart vs Seman- 

tic contracts 

Argues that semantic contracts offer two forms of flexibility: linguistic ambiguity and enforcement dis- 

cretion, which are important in contracting process and therefore smart contracting will impose more 

costs. 

Arruñada, B. 

(2018) [9] 

Smart contracts 

for Property 

rights 

Argues that intermediaries’ role is crucial in the processes of firms’ strategies and contracting and there- 

fore it can not be replaced by blockchain, but argues for private blockchains for archiving purposes 

within standard registration systems. 

Morgan, J. S. 

(2018) [80] 

Open-minded 

Regulation 

Argues for regulation of cryptocurrencies with a more open-minded approach to promote truly in- 

formed policy decisions as opposed to irrational and poor investment decisions. 

Young, S. 

(2018) [115] 

Smart Constitu- 

tion, Smart Social 

Contract 

Advocates for smart constitution, to make the government operates in a transparent manner and unable 

to operate outside of its mandate and also argues that "When something is codified, and connected to 

the blockchain, code is law. When the code is the law, any entity tied to it is powerless to act outside of 

the code. This will ensure that governments stay within their expressed powers." [115]. 
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A.2. Methodology 
 

Table appendix-2-tab-3. Summary Statistics of the Dataset 
 

Categories Avg. tran Median 
tran 

Min. 
tran 

Max. tran Avg. add Min. 
add 

Max. add 

scam 9204715.087 34978 5.0 38985037.0 3525702.391 1.0 34824555.0 
mixing 2439028.0 10422 70.0 8378334.0 70824.1 1.0 384639.0 
merchant-service 2191909.059 8711 32.0 14077596.0 129702.823 1.0 1190042.0 
hosted-wallet 2024807.455 166659 69.0 8409932.0 1179530.818 4.0 7082504.0 
mining-pool 423138.224 92601 77.0 25711235.0 184429.970 4.0 10401110.0 
darknet-market 394636.348 16823 137.0 5506509.0 168252.391 2.0 2459230.0 
gambling 167739.010 127988 24522.0 15720219.0 24430.950 3.0 2066757.0 
exchange 111160.373 19155 141.0 12971522.0 16387.346 1.0 791448.0 
ransomware 24425.714 19522 961.0 68050.0 529.761 1.0 7902.0 
stolen-bitcoins 1047.5 723 120.0 2623.0 531.75 6.0 2072.0 
other 801.982 407 10.0 14168.0 505.123 1.0 8798.0 
personal-wallet 204.007 52 4.0 5419.0 87.607 3.0 2525.0 

 
Table appendix-2-tab-4. Original Features in the Raw Datasets 

 
Feature Name Description 
TRX Date Timestamp of the transaction 
TRX BTC Received Amount of BTC received (Blank if the entity is the sender) 
TRX BTC Sent Amount of BTC sent (Blank if the entity is the receiver) 
TRX USD Value Equivalent USD amount at the point in time 
TRX Peer Category Entity type of the counterparty (e.g. exchange or darknet-market) 
CP BTC Sent Total BTC amount sent to a given cluster 
CP BTC Received Total BTC amount received from a given cluster 
CP TRX Output Count Total number of transactions conducted with the given cluster 
CP BTC Flow Numerical value of received BTC minus sent BTC with the given cluster 

 
Table appendix-2-tab-5. Sample of Features Extracted and Engineered 

 
feature name description 
trx_btc_rcvd_sum total received BTC 
trx_btc_sent_sum total sent BTC 
trx_balance latest balance 
trx_usd_rcvd_sum total received USD 
trx_usd_sent_sum total sent USD 
trx_btc_rcvd_max highest received USD 
trx_withdrawals number of withdrawals 
trx_deposits number of deposits 
trx_clusterLT age of cluster in days 
trx_count_LT transactions/age 
trx_btc_rcvd_count_LT ratio of deposits/age 
trx_btc_sent_count_LT ratio of withdrawals/age 
trx_btc_rcvd_sum_LT ratio of received BTC/age 
trx_btc_sent_sum_LT ratio of sent BTC/age 
trx_usd_sent_sum_LT ratio of received USD/age 
trx_usd_rcvd_sum_LT ratio of sent USD/age 
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Figure appendix-2-fig-1. Class Distribution of the 3 Datasets 
 

Figure appendix-2-fig-2. Algorithms Comparison with the Original Dataset 
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Figure appendix-2-fig-3. Algorithms Comparison with the Oversampled Minorities Dataset 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure appendix-2-fig-4. Algorithms Comparison with the Oversampled Auto Dataset 
 

Table appendix-2-tab-6. Top 4 Algorithms Comparison With Tuned Hyperparameters 
 

 Original Dataset Oversampled Minority Oversampled Auto 
GBC 0.8271 (0.0426) 0.8814 (0.0420) 0.9753 (0.0074) 
RFC 0.8102 (0.0438) 0.8613 (0.0386) 0.9502 (0.0101) 
ETC 0.7921 (0.0384) 0.8444 (0.0429) 0.9197 (0.0110) 
BGC 0.8172 (0.0404) 0.8761 (0.0372) 0.9680 (0.0087) 
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Figure appendix-2-fig-5. Top 4 Algorithms with Tuned Hyperparameters and Original Dataset 
 

 
 
 
Figure appendix-2-fig-6. Top 4 Algorithms with Tuned Hyperparameters and Oversampled 
Minorities 
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Figure appendix-2-fig-7. Top 4 Algorithms with Tuned Hyperparameters and Oversampled 
Auto 

 

 
 
 

Table appendix-2-tab-7. Number of Observations in the 3 Datasets 
 

Cluster Categories Original dataset Oversampled  minorities Oversampled auto 
darknet-market 46 46 306 
exchange 306 306 306 
gambling 102 102 306 
hosted-wallet 11 11 306 
merchant-services 17 17 306 
mining-pool 67 67 306 
mixing 10 10 306 
other 57 57 306 
personal-wallet 293 293 306 
ransomware 21 21 306 
scam 23 23 306 
stolen-bitcoins 4 306 306 
Total 957 1259 3672 
% of synthetic observations 0% 23.99% 73.94% 



13 

Page 13 of 18 
 

 

 
 
 
Table appendix-2-tab-8. Classification Report from GBC with Original Dataset and Tuned Hy- 
perparameters 

 
 precision recall f1-score support 
darknet-market 0.7273 0.6154 0.6667 13 
exchange 0.7527 0.9459 0.8383 74 
gambling 0.8148 0.7586 0.7857 29 
hosted-wallet 0.0000 0.0000 0.0000 2 
merchant-services 1.0000 0.2500 0.4000 4 
mining-pool 1.0000 0.7059 0.8276 17 
mixing 0.0000 0.0000 0.0000 4 
other 0.5000 0.4286 0.4615 14 
personal-wallet 0.9114 0.9730 0.9412 74 
ransomware 1.0000 0.3333 0.5000 6 
scam 0.6667 0.6667 0.6667 3 
avg / total 0.8009 0.8125 0.7928 240 

 
 
 
 
 
 

Figure appendix-2-fig-8. ROC Curves with tuned GBC and Original Dataset 
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A.3. Results 
 
Figure appendix-3-fig-9. Bitcoin Ecosystem by Predicted Number of Entities per Class 
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A.4. Python Script 

The following Python script is for identifying cybercrime-related entities on the 

Bitcoin Blockchain network. This jupyter notebook is an example of how to 

implement and use su- pervised machine learning techniques to find what addresses 

are likely to be controlled by cyber-crime related entities. 

IMPORTANT: This is an experimental tool, do not use in production. 
 
In [1]: import os 

import pandas as pd 
 
In [2]: # load the list of suspects data (already 

preprocessed) suspects = 

’a_datasets/datasets/suspects_processed.csv’ df 
= pd.read_csv(suspects) 

print(’number of suspects to classify:’, 

len(df)) number of suspects to classify: 22 

In [3]: from 
c_model_training_selection.train_validate_predict_one_model 

import  models_training_predict_one_model 

 
#  importing  the  processed  labelled data 

labelled  = "a_datasets/datasets/processed.csv" 
 
 

# choose  which  classifier to  use 

# available: ’RFC’, ’ETC, ’GBC, ’BGC’ (these are just algorithms’ 
names) 

 
model = ’GBC’ 
models_training_predict_one_model(labelled,  suspects, model) 

 
No errors. All set for 
predictions! Predicting 

supects... 

training time w GBC: 
62.433 s predicting 
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time w GBC: 69.418 s 
 

predictions ['exchange' 'ransomware' 'exchange' 'ransomware' 
'ransomware' 'ransomware' 'personal-wallet' 'gambling' 'exchange' 
'ransomware' 'exchange' 

'personal-wallet' 'darknet-market' 'ransomware' 
'ransomware' 'ransomware' 'ransomware' 'exchange' 
'ransomware' 'ransomware' 'ransomware' 'ransomware'] 

 
In [4]: #  run this cell for the prediction report with all  models 

# so you can easily compare the different classifiers’    
predictions 

 
from 
c_model_training_selection.train_validate_predict_to

p_models import produce_prediction_report 
#  hard  import  training  set 

labelled  = "a_datasets/datasets/processed.csv" 
 

# hard import of predicting    set 

suspects  = ’a_datasets/datasets/suspects_processed.csv’ 
 

produce_prediction_report(labelled, 

suspects) producing report... 

training time 
w RFC: 0.284 s 

predicting time 
w RFC: 0.315 s 

 
training time 
w ETC: 0.264 s 
predicting time 
w ETC: 0.288 s 

 
training time w 

BGC: 63.314 s 
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predicting time 
w GBC: 69.972 s 

 
training time w BGC: 35.808 s 
predicting time w BGC: 39.917 s 

 
 
Predictions ready: 

Address                    RFC                          ETC                                BGC                         GBC 
 
0 add1 personal-wallet personal-wallet personal-wallet exchange 
1 add2 ransomware personal-wallet gambling ransomware 

2 add3 ransomware personal-wallet ransomware exchange 
3 add4 personal-wallet personal-wallet exchange ransomware 
4 add5 exchange personal-wallet gambling ransomware 
5 add6 ransomware ransomware ransomware ransomware 

6 add7 exchange personal-wallet ransomware personal-wallet 
7 add8 gambling gambling other gambling 
8 add9 exchange other exchange exchange 

9 add10 gambling personal-wallet gambling ransomware 
10 add11 exchange other exchange exchange 
11 add12 personal-wallet personal-wallet personal-wallet personal-wallet 
12 add13 ransomware ransomware ransomware darknet-market 

13 add14 personal-wallet exchange ransomware ransomware 
14 add15 ransomware personal-wallet ransomware ransomware 
15 add16 ransomware personal-wallet ransomware ransomware 

16 add17 exchange personal-wallet gambling ransomware 
17 add18 exchange personal-wallet exchange exchange 
18 add19 exchange personal-wallet gambling ransomware 

19 add20 exchange personal-wallet gambling ransomware 
20 add21 ransomware personal-wallet gambling ransomware 
21 add22 exchange personal-wallet gambling ransomware 
 
In [ ]: #  clear  temporary files 

from utils.flush import flush_folder 
from utils.flush import flush_file 
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folder = ’a_datasets/temp/’ 
file  = ’a_datasets/suspects-preprocessed.csv’ 

flush_folder(folder) 
flush_file(file) 

print("All temp files removed, ready for new analysis!") 
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